a2 United States Patent

Ben-Aharon et al.

US010691873B2

US 10,691,873 B2
*Jun. 23, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)
")

@
(22)
(65)

(63)

(1)

(52)

(58)

SYSTEM AND METHOD FOR THE
CREATION AND USE OF
VISUALLY-DIVERSE HIGH-QUALITY
DYNAMIC LAYOUTS

Applicant: Wix.com Ltd., Tel Aviv (IL)

Inventors: Roni Ben-Aharon, Tel-Aviv (IL); Uri
Dromy, Tel Aviv (IL); Barak Igal, Kfar
Yehoshua (IL); Daphna Ofek, Ginaton
L)

Assignee: Wix.com Ltd., Tel Aviv (IL)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 172 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 15/653,568

Filed: Jul. 19, 2017

Prior Publication Data

US 2017/0315969 Al Nov. 2, 2017
US 2018/0150436 A2 May 31, 2018

Related U.S. Application Data

Continuation of application No. 14/699,828, filed on
Apr. 29, 2015, now Pat. No. 9,747,258.

(Continued)
Int. CL.
GO6F 3/01 (2006.01)
GO6F 40/30 (2020.01)
(Continued)
U.S. CL
CPC GO6F 40/106 (2020.01); GOGF 40/186

(2020.01)
Field of Classification Search
CPC GO6F 40/186; GOG6F 40/106; GOGF 40/103;
GOGF 16/9535; GOGF 3/0481; GOGF
3/125
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0065974 Al* 3/2008 Campbell GOG6F 40/186

715/200

2009/0044126 Al 2/2009 Wyler

(Continued)

FOREIGN PATENT DOCUMENTS

JP
WO

2009230260
2011119142

10/2009
9/2011

OTHER PUBLICATIONS

English Abstract of JP 2009230260 generated online on Sep. 3,
2015.

(Continued)

Primary Examiner — Ariel Mercado

(74) Attorney, Agent, or Firm — Heidi Brun Associates
Ltd.

(57) ABSTRACT

A website building system, the system includes a layout
database to store least one layout and an associated signature
where the signature represents a semantic composition of the
at least one layout, a page analyzer to at least generate an
associated signature for a user supplied handled component
set, a signature comparer to perform a comparison of the
signature of the user supplied handled component set with
the associated signature of the at least one layout stored on
the layout database, a layout searcher and generator to
acquire at least from the layout database a set of candidate
layouts according to the results of the signature comparer
and where the candidate layouts are visually different and
semantically similar from the user supplied handled com-
ponent set and a layout adapter and applier to adapt the
handled component set to a selected layout from the set of
candidate layouts.

34 Claims, 26 Drawing Sheets

2 /iy Account] Wi x T TWix HTML Editor % \p_

—TBT¥

¢ - C{Deso

D News [B Egm DMop CiPer CIUN CIWork C1AKido C1BF £l Bikevhesi £1Ewk £1wn £10 B30 DIV BIY DAV

1-eddrod 11

WiX @0 Poe bome “ L F per Sow puish Ugrada 7 |a
i T
®) G
. |
] 3
15 ” - B ®
Magic Layout
it the sty tor o St the Beknan wivd
& o be tonde b crem wh ore.
7 Supporing soch man on the op ol the e
/_5'\ B0 figer anbeined i o e
Ty
"t 8o gl for o St ¢ e s R twicn
{ o s e e o
Juet the place for a Shork | hove it trice
Whol et you tree timen i rue”

US 10,691,873 B2
Page 2

Related U.S. Application Data
(60) Provisional application No. 61/985,849, filed on Apr.

29, 2014.

(51) Int. CL
GOGF 40/106
GOGF 40/186

(56)

2010/0194753 Al

2010/0211927

2012/0278704
2013/0014008
2013/0024757
2013/0124968

2013/0219263
2013/0275892
2014/0101533
2014/0157108

(2020.01)
(2020.01)

References Cited

U.S. PATENT DOCUMENTS

8/2010 Robotham
8/2010 Cai .oooveeriervne

11/2012 Ying
1/2013 Damera-Venkata
1/2013 Doll
5/2013 Dontcheva

8/2013 Abrahami
10/2013 Li
4/2014 Imrich
6/2014 Schmidt

GO6F 40/20
717/104

GO6F 17/212
715/234

GO6F 40/14
715/234

2014/0229821 Al
2014/0237429 Al
2014/0282218 Al
2014/0331124 Al1*

82014 Abrahami

82014 Abrahami

9/2014 Abrahami
11/2014 Downsc.co.... GOG6F 40/106
715/243

2015/0074516 Al 3/2015 Ben-Aharon

OTHER PUBLICATIONS

International Search Report for corresponding PCT application
PCT/IB2015/053126 dated Aug. 14, 2015.

Christian K. Shin et al., “Classification of document page images
based on visual similarity of layout structure”, Center for Automa-
tion Research, University of Maryland, 1999.

Gisli R. Hjaltason et al., Contractive embedding methods for
similarity searching in metric spaces, Center for Automation Research,
University of Maryland, Jan. 2000.

Xianjun Sam Zheng et al., “Correlating low-level image statistics
with users’ rapid aesthetic and affective judgments of web pages”,
International Conference on Human Factors in Computing Systems
(SIGCHI), Apr. 2009.

Marcos R. Vieira et al., “On query result diversification”, 2011.

* cited by examiner

US 10,691,873 B2

Sheet 1 of 26

Jun. 23, 2020

U.S. Patent

{
!
!
]
'''' 4“]nl‘l'-ll.‘...'ll'lll“.l‘lll‘l‘.l'lll"""‘-Il.ll‘.l‘l‘..'l'l‘lll'l""l"lll""l"ll“‘l‘l—"‘l'l‘l
[|
[I
_ _
| |
_ |
!
[spoob aiay) anpA oF “mdjoug D puy |
| ~goyndsip soyy ebuoup o) bnoig ‘Jsspg v |
_ s ~8POOH pub gjeuliog Jo JeNpw ¢
_ m._n —63008 D PapNIoUl Y ‘93|dWIOS SDM MUD YL !
I
[I
| o0} B 89w SaNy nok (8 JOUM - |
[- 83Uy} 3 PIDE 3ADY | DS b Joj aapyd ayy snp
#e0 ayy obounosue proys suop oyl _
“ N._. S0jM} }| PIDS 6ADY | PHDYS D Joj eo0jd ey yenp, < [
[
_ apy s Jo MM“ M_._“ o w4 ._omccc u&amm V//)H\Q _
I uo ubw yooa bunJo
_ \\. ‘aibd UM MO SI Papup| oy ey " @
_ _‘._. paud uowjjsg ey pHDYS D Joj 8opjd ey} isnp, _
_ . @®
_ |
| @
| Hd 9
_
 —— ME—
it
[!
& | |
| |
v _ ¢ opobdn usiang saos memayd L, B T o L A swoy sfog i 5 XIM
WO A AL DD ©07 UnL[J WAIL] !Ssy+oyE [407 OPMIVLD MOMID MNLZ Jodrg dow O wb [B B E s#sNOQ
= ?«.» 1889540)1paREB | BGZOYZEI~0CGE b Ly ~069G L BISZLP=PIBYISOIBWEDLRY | | PEIYPE— | LIB—GZCH~BOP L ~GBIDZYY,/Pa/ Jalapual/qam/IoNps /iy /wod ximeioups (] _ 0« -
< TE=] TN\ X Joupd TWIH XMC]{x xim unoooy AN [T/ ()

US 10,691,873 B2

Sheet 2 of 26

Jun. 23, 2020

U.S. Patent

¢l
¢l

|

\

7

\ 1
A

‘839104 Pajos[es inok oD
*suonsebbng ees 0} synoko)
8y} Jeao Jogind Jnok uny

In0AD7 o1bDY

spoob Jjay} anjoa 0} Uaxoig B puy

~sendelp soyy ebunun o) wbnosg “eswiog v
~SPOOH pub gjeuliog Jo Ieow y
B FQ —5300g D POpNjoul 3 ‘910[dwiod SDM MaUD YL

o0} 81 sawy cesy nok Jisy JouM

ool Y PIDE 9ADY | Wioyg b o} eooid ayy jsnp
Moo oy} obmunoous pinoys euolp Joy)

90W) 3 PID8 SADY | jiyS D Joj eoDjd syy Isn,

-ld

Jioy sy u) psupkue Jebuy o Ag

@pyy oy} jo doy ey uo uow yooa bBujpoddng
‘A UM MRID SIY Papup] ay sy

‘peuo uowijeg ey} pEDYS b Joj soojd sy} snp,

4_ & opuibdn ysgand savs mamed L B O v o

A swoy :sbog ([X _ >>

ANV A ACD IIC] O] UALLJ WAILD [SSY+oNE [46 00 OPMIVLI HOMCI INCI Jod] doN[] wh R [§ [] smeNCI

= _uaw_mmwmgs_vcénw—oonNuvwnolommmlovm*lomumlonewwn_uu_u_wu_wBoEwunom_Pum#_uol_twlmwn.vlomv—ImEuuov.v\tuo\k_mumvcﬂ\no;\._ozvo_EE\Eoo.x_s.._o«_uw rl.__ (Sl 4

X |8

N\

Joyp3 TALH XM (x xw funosoy AN/ &)

US 10,691,873 B2

Sheet 3 of 26

Jun. 23, 2020

U.S. Patent

VE DIA
0/
\% AH0LISOd3Y
YIUVANOD ddV
/4] 3UNIvNaIS | | MOLVYINID ANV YIZATVNY
aa1
mm\
e YDINVY NV |
4 ¥3171 +59<,_ TR
NOIE YIIVNYI
¥AMddY ANV ¥31dVaVY 1NOAVT = J39Vd ddv. ™
05— or 0!
Qk
SNYAW 0/
001—"

¢’ N

US 10,691,873 B2

Sheet 4 of 26

Jun. 23, 2020

U.S. Patent

dE DId
S304N0S
WNYILXI Sz
o 80
i
//
4I4YdINOD \\ \\
nivNais [| [SDINVG NV AIZATVNY 4301dS
SIOLYNIQH00D ML LNOAVT 39vd 39vd A0LISOd3N
407 /@ /¢ /§ ddv
/
G/ —
¢
QS\\

U.S. Patent Jun. 23,2020 Sheet 5 of 26 US 10,691,873 B2

g 7

— \., P1

R - 1
PAGE - N\ /\

- N\ /\

— D L1

R - | |

— AWAN —— SIGNATURE
LAYOUT _ /\ /\ 2XText, 1XPic

M1

MATCH Txt Pic /

FIG.4

US 10,691,873 B2

Sheet 6 of 26

Jun. 23, 2020

U.S. Patent

G OIH
L) 9% 1
N | ¥oLovyix3 NERNE[N |/
JUNLYNOIS ININOJNO9
Gt #p1
Nl NETR[E 4ALLNdS L/
ININOJWO9 ININOJWOD
SFOVMOVA LNOAVT +
SIUNLYNDIS + SLNOAYT S —— 39w
| y310NwH Y3LLNdS
Va YANIVINOD LNOAYT N
g A4
|| ¥31ONVH XINIT SEETNEL]
Va OILNVYAIS JdAL 39Vd N
I# 0%
oy~ 4IZAYNY 39Vd

U.S. Patent Jun. 23,2020 Sheet 7 of 26 US 10,691,873 B2

[

oo | & |
AAAAND

:::§§ N :__gg C

FIG.6

A
(=

r——— Bl

| [— —] |

| = = I

[| |—

[| | =

| [— —] | | =

| | = | | | =
M= = =

| |
- = [= —] | [=
= = | |= —| | |=
=== = | | =
R ERERNE

| — — 1 | =

[|

| |

[|

[|

| |

FIG."7

U.S. Patent Jun. 23,2020 Sheet 8 of 26 US 10,691,873 B2

PAGE
TEXT TEXT
TEXT
PIC PIC
PIC PIC
PIC PIC
CONTAINER
FIG.8
COMPONENT -~——————————— .
VISUAL NON—IBUAL

X

1

1

1

1

1

i

IMAGE VIDEO TEXT i
1

|

SINGLE LINE MULTI LINE ;

CONTAINER

2N

GALLERY BOX
FIG.9

U.S. Patent

Jun. 23, 2020 Sheet 9 of 26

US 10,691,873 B2

A
A 0]
A N\
N\
O
A — —
N — —
B
————— T = T T~
- \ \ AN
// \ \
// A /O\
/ N\
/ / N
| /
y
[@)
L 7] - A - -
7 |- A — —
11 1 — p—
|I// e e
Q- - — - — p—

FIG.10

U.S. Patent Jun. 23,2020 Sheet 10 of 26 US 10,691,873 B2

@ b™—— A € /\/\f '
VAN VAWAY
A I —
d— A AA
() ﬂ
b™—— NI AA f
/\ VaWaY
B c —
d —— A AA
O ﬂ
/\ e, AN f, /\ g’ AN h,
C /\ VAWAY /\ VAWAY
b'—— o p— d—
(I M
i’ j’
VAN AN N\ AN
D VAN VANWAY VAN VAYWAY
a'| — — p—

FIG.11

U.S. Patent Jun. 23,2020 Sheet 11 of 26 US 10,691,873 B2

A A
d T~ d’
d : 0, b’ :
(1 c —> =
b ¢’
d ,
a r=—=— = — — — d -
(I c —> |ild||c|]|b]
b L _I
e f ’ —f
al| |[e |
(D) —> Lall b
b d |__4i——’—i|__4
L)
€ f l__’—————,e”f"
a C : a d :
(V) —> | |
b d | ¢’ b’
t—__=— |

FIG.12

U.S. Patent Jun. 23,2020 Sheet 12 of 26 US 10,691,873 B2

HANDLED LAYOUT
COMPONENT DATABASE
SET
A =
O e
HP =
| —
| =
| !
| H|
| |
RV
ANl = B
| = = = =
a . — = =
x| =
| =
/ = AVAN
c| |
__ p— p—
__ —
_\i — —
e |
AREY
RARANA

FIG.13

U.S. Patent Jun. 23,2020 Sheet 13 of 26 US 10,691,873 B2

o
= =] =]
9
o

V=

;

Pic

(il

Il |,

Pic

(-
[{®]
K

(et

D00

F1G.14

U.S. Patent Jun. 23,2020 Sheet 14 of 26 US 10,691,873 B2

<< <K<
C 1] << <<
o o [[T [1]
|| | || | |] T 0
Lol (NI
Y
<<<< <<<<
S T 11 11T 11 =
~—
)
=
||| ||| || |
O
|||
e i
||| i
<<<< <<<<
|| | a
<C

U.S. Patent

Jun. 23, 2020 Sheet 15 of 26

US 10,691,873 B2

A
a
C
al—e —— i
G| — X
AVAN
(]3—> _—
B
N |
O
AVAN
b1 b2 b3

FIG.16

U.S. Patent Jun. 23,2020 Sheet 16 of 26 US 10,691,873 B2

COMPONENT

N

VISUAL TEXT

///// \\\\\ SHVGﬁE//’ \:;jtﬂ

IMAGE VIDEO LINE LINE

FIG.17

TEXT

/N

TITLE PARAGRAPH

FIG.18

COMPONENT 3
e ~
e AN
VISUAL TEXT)
AR // \\
/ N SINGLE MULTI

IMAGE VIDEO LINE LNE 1

FIG.19

U.S. Patent Jun. 23,2020 Sheet 17 of 26 US 10,691,873 B2

3
COMPONENT
NON _VISUAL
VISUAL / \ 2
/ \ BUTTON TEXT

/ \
IMAGE VIDEO / \

SINGLE LINE MULTI LINE

WIDE IMAGE TALL IMAGE

FIG.20

LAYOUT FILTER
+ RANKER %

46— VISUAL PAGE
COMPARER
1| LAYOUT QUALITY
47 RATER
4911 DIVERSIFIER

FIG.21

U.S. Patent Jun. 23,2020 Sheet 18 of 26 US 10,691,873 B2

LAYOUT
PAGE + SIGNATURES + LAYOUT PACKAGES raeciien anp
44 || GENERATOR
\{ PacE - 160
ANALYZER | 62 6%
| AGL SBL |
| HANDLER [| HANDLER |
| |
| 2] 2] |
REQUEST /30 : \ / :
PAGE | 66\ |
USER | EDITOR | MATCHER |
PREVIEWER | |
1 R R |
b N3
! 45
LAYOUT FILTER |
AND RANKER
! 50
LAYOUT ADAPTER | 7
AND APPLIER

FIG.22

US 10,691,873 B2

Sheet 19 of 26

Jun. 23, 2020

U.S. Patent

e Dl

d31ANVH
18S

wm\\\

X

o

dOLVYIND
aasva 41Ny

7

v9¢

19vd

dFTANVH 10V

mml//

JAHOLVIN

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
—
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

dO1VHYIN4D
LNOAVT VY
AdIS + NIV

JOLVHIN3O
1NOAV'
NAN10D

A

19vd

<

£9¢

dOLVNIQYO0D 1OV

dIZATVNY 49vd

*

dAMIINTHd

L

d011d4
19vd

N

c9¢

J9vd

NMY\\

///Qh

I

US 10,691,873 B2

Sheet 20 of 26

Jun. 23, 2020

U.S. Patent

adt

074

V2 Dld
 — |
| YI1ONVH | _SINOAVI |
| A LNOAVT | sjnown |
| cgy LININOIS [™nanass |
| |
| SINOAYT - |
o M| mmummﬁx |
/] oV e SINOAV] !
| SINANOAWOD | VILdvd VIV |
| S 99~
p | s || y3HoLYW
| SLNOAVT ININ93S- |
N | SINOAY] ILVd- Y 1Y | !
d34vdNOO | | 1 INOAVI 30Vd TiNd- =1OIYNIA¥00D| SINOAYT |
mozzﬁmooo = ISTT UNLVNIIS NS [z
\m_o | —~ SIS BNWNIIS] | 39vd
¢/ 1 19 + S1S3IN03Y “ ﬂ
- - - |
79 4IIANVH 18S
¥ola3
] m\ HIMIATY | o
oc

U.S. Patent Jun. 23,2020 Sheet 21 of 26 US 10,691,873 B2

COMPONENT
y &

VISUAL TEXT

N ¥ N
SINGLE MULTI

IMAGE VIDEO LINE LINE

FIG.25

COMPONENT 10 EXTRA

y R COMPONENT

VISUAL TEXT

N ¥y N
SINGLE MULTI

IMAGE VIDEO LINE LINE

FIG.26

U.S. Patent Jun. 23,2020 Sheet 22 of 26 US 10,691,873 B2

> x> X > N
m & &
e X | |=C x| |=C
+ + +
m — (@) O
R E L [o-] L o]
2] ||| [2=] Il [o] Il [o]
1))l o] -] o]] [o]
L [o-] L [o] L [o]
[[a] I [=] I [2]
A
n
|
\\
\ "
<C ‘\\ /
L /
N e ||| | & 2~
al <C a2
= :
1 | & O =
F
al all
| w o
ok N
1A - o
/
[
I
(. v J AN _/ —
O X O O

U.S. Patent Jun. 23,2020 Sheet 23 of 26 US 10,691,873 B2

I
il TS
88 i< 1)1
L O
ik | =
I i S
|
Ol & 1|1 s
o Lt <
- g0
g/ :
il il
m O
T 1 w
1< N
Sl s z

US 10,691,873 B2

Sheet 24 of 26

Jun. 23, 2020

U.S. Patent

VAV
VAV
VAV
p|l Vv
VAV VvV
/_\/\ 9 /_\/\
398 308
pp[] oo[]

LNOAVT d310313S

6c Vld

— aq[__ |
S MV
— gl
398
— oo[]
V'V
— o /_\/\
398

LNOAVT IN3HdND

US 10,691,873 B2

Sheet 25 of 26

Jun. 23, 2020

U.S. Patent

d011d4
19vd

0€ DId
| ¥OIvHINIO ONY H3HONYES 1NOAYT
09 H
85~
0SST008d 1Sod| [83Nddv ALnaLLy
ININONOD |
I |
IONVH NOISYIANOD 3dAL ININOAWOD K
95
YIIONVH ININOJWOD ONINWAZY N
ole
dOLVAINIOR, T y31aNvH ININOAWOD QIONIN/LNdS N
MIATU e
7o
¥3NddY SIONVHO MINWINOD |
£G
4IONVH LNOAVT JINYNAQ S
26
05— ANddY ANV ¥3LdvVav LNOAY]

US 10,691,873 B2

Sheet 26 of 26

Jun. 23, 2020

U.S. Patent

16 014

¢l

¢l

L1

RS

¢SOH

¢SOH

| SOH

¢l

¢l

L1

US 10,691,873 B2

1
SYSTEM AND METHOD FOR THE
CREATION AND USE OF
VISUALLY-DIVERSE HIGH-QUALITY
DYNAMIC LAYOUTS

This application is a continuation of U.S. application Ser.
No. 14/699,828 filed Apr. 29 2015 and now issued as U.S.
Pat. No. 9,747,258, which claims benefit from U.S. Provi-
sional Patent Application No. 61/985,489, filed Apr. 29,
2014 which is hereby incorporated in its entirety by refer-
ence.

FIELD OF THE INVENTION

The present invention relates to website building systems
generally and to layout in particular.

BACKGROUND OF THE INVENTION

Web site building systems have become very popular and
allow novice web site builders to build professional looking
and functioning websites. Many of these systems provide
both the novice and experienced user ways of building web
sites from scratch.

A website building system may be a standalone system, or
may be embedded inside a larger editing system. It may also
be on-line (i.e. applications are edited and stored on a
server), off-line or partially on-line (with web sites being
edited locally but uploaded to a central server).

Websites are typically made up of applications and a
visually designed application typically consists of pages
which may be displayed separately and contain components.
Components are typically arranged in a hierarchy of con-
tainers (single page and multi-page) inside the page con-
taining atomic components. A multi-page container may
display multiple mini-pages. Pages may also include list
applications and third party applications.

Pages may also use templates—general page templates or
component templates. Specific cases for templates include
the use of an application master page containing components
replicated in all other regular pages, and the use of an
application header and/or footer (which repeat on all pages).
The arrangement of components inside a page is called the
layout.

SUMMARY OF THE PRESENT INVENTION

There is provided in accordance with a preferred embodi-
ment of the present invention, a website building system
implementable on a computing device. The system includes
a layout database to store at least one layout and an asso-
ciated signature where the signature represents a semantic
composition of the at least one layout; a page analyzer to at
least generate an associated signature for a user supplied
handled component set; a signature comparer to perform a
comparison of the signature of the user supplied handled
component set with the associated signature of the at least
one layout stored on the layout database; a layout searcher
and generator to acquire from at least the layout database a
set of candidate layouts according to the results of the
signature comparer and where the candidate layouts are
visually different and semantically similar from the user
supplied handled component set and a layout adapter and
applier to adapt the handled component set to a selected
layout from the set of candidate layouts.

Moreover, in accordance with a preferred embodiment of
the present invention, the system also includes a page spider

10

15

20

25

30

35

40

45

50

55

60

65

2

to retrieve at least one of: new and updated pages, templates
and manually created layouts from an associated application
repository and pages from external sources; and a layout
filter and ranker to filter and rank at least one of: the at least
one layout generated by the page analyzer and the candidate
layout.

Further, in accordance with a preferred embodiment of the
present invention, the signature is based on the semantic
classification categories of the components of the website
building system.

Still further, in accordance with a preferred embodiment
of the present invention, the user supplied handled compo-
nent set represents at least one of: an entire page and a subset
of components of the page.

Additionally, in accordance with a preferred embodiment
of the present invention, the candidate layouts are acquired
based on at least one of: a full signature of the user supplied
handled component set, a partial signature of the user
supplied handled component set, at least one segment sig-
nature of the user supplied handled component set and an
automatically generated layout.

Moreover, in accordance with a preferred embodiment of
the present invention, the layout database is at least one of:
user specific and group specific.

Further, in accordance with a preferred embodiment of the
present invention, the comparison is based on at least one of:
semantic abstraction and semantic distance metrics.

Still further, in accordance with a preferred embodiment
of the present invention, the page analyzer includes: a
semantic link handler to identify semantic links which
connect at least two components in at least one of: the at
least one website page and the user supplied handled com-
ponent set and to build a relevant data structure; a layout
splitter to divide at least one of: the at least one website page
and the user supplied handled component set into segments
based on at least one of: geometrical considerations, the
semantic links and dynamic layout anchors; and a signature
extractor to extract at least one of: a full semantic signature
and a partial semantic signature in the at least one layouts
and the user supplied handled component set and where the
signature extractor performs at least one of: semantic type
mapping of the components, dividing sematic types based
on visual properties of the components and generating
signature elements based on multiple component semantic
types. The page analyzer also includes at least one of: a page
type identifier to determine the page type of at least one of:
the at least one website page and the user supplied handled
component set; and a component splitter to split at least one
component of at least one of: the webpage and the user
supplied handled component set based on the content of the
at least one component; and a component filter to filter out
unsuitable components for the signature extractor; and a
component merger to unite at least two components for
layout processing and signature extraction by the signature
extractor; and a container handler to reduce the amount of
different page signatures by performing at least one of: using
hierarchical signatures, container flattening, container flat-
tening and reconstruction, single component container
replacement; dominant type selection and recursive imple-
mentation. The page analyzer generates at least one of a
single full page layout, multiple partial page layouts, mul-
tiple segmented layouts and an associated layout package
after processing by at least one of: the layout splitter, the
signature extractor, the page type identifier, the semantic
link handler; the component splitter; the component filter;
the component merger and the container handler.

US 10,691,873 B2

3

Additionally, in accordance with a preferred embodiment
of the present invention, the hierarchical signature repre-
sents the original hierarchical structure of the at least one
layout.

Moreover, in accordance with a preferred embodiment of
the present invention, the components of the multiple partial
page layouts and the multiple segmented layouts are subsets
of the single full page layout.

Further, in accordance with a preferred embodiment of the
present invention, the associated layout package includes at
least one of: the handled component set for the webpage,
page type indication, component and container split/merge
information, the dynamic layout anchors, semantic links,
component relevance information, page screenshot, the
associated signatures and the associated web-pages.

Still further, in accordance with a preferred embodiment
of the present invention, the layout filter and ranker includes
a visual page comparer to compare at least one of: the level
of visual similarity between the at least one layout and other
layouts in the layout database and the level of visual
similarity between the user supplied handled component set
and at least one of the candidate layouts; a layout quality
rater to calculate a quality score in order to filter out
low-quality pages of at least one of: the at least one layout
and the candidate layouts based on at least one of page
statistical metrics, page visual attributes, content and a
layout quality rater learning system; a ranker to order at least
one of the at least one layout and the candidate layouts
according to at least one of: component size matching,
semantic similarity to the signature of the user supplied
handled component set and component size matching; and a
diversifier to ensure visual diversity between at least one of
the following pairs: the user supplied handled component set
and the candidate layouts and the at least two layouts stored
in the layout database.

Additionally, in accordance with a preferred embodiment
of the present invention, the layout searcher and generator
includes a server based layout handler to perform at least one
of: retrieving the candidate layouts from the layout database,
completing the partial candidate layouts and combining of at
least two of segmented candidate layouts; an automatically
generated layout handler to perform at least one of: creating
the automatically generated layouts based on the compo-
nents in the handled component set and completing the
partial candidate layouts retrieved by the server based layout
handler; and a matcher to create a match of components
between the handled component set and the candidate lay-
outs where the match is at least one of: exact and partial.

Further, in accordance with a preferred embodiment of the
present invention, the automatically generated layout han-
dler includes: an automatically generated layout coordinator
to receive at least one of: a base component set of the
handled component set and a base component set of com-
ponents missing from an associated partial candidate layout
from the server based layout handler and to create multiple
possible algorithmically-generated layouts from the base
component set. The automatically generated layout handler
also includes at least one of: a column layout generator to
place components from the base component set into one
column after the other and a main and side bar layout
generator to place components from the base component set
in a main column followed by a smaller side-bar and a rule
based generator to place components from the base compo-
nent set according to pre-defined placement rules.

Still further, in accordance with a preferred embodiment
of the present invention, the server based layout handler
includes: a server based layout coordinator to perform at

10

15

20

25

30

35

40

45

50

55

60

65

4

least one of: receiving the handled component set and the
associated signatures, querying the layout database using the
associated signatures, retrieving the set of candidate layouts
and coordinating completion of at least one of: the partial
candidate layouts and the segmented candidate layouts
retrieved from the layout database; a partial layout handler
to send components missing from the partial candidate
layouts to the automatically generated layout handler and to
use the resulting automatically generated layout to complete
the partial candidate layouts; and a segment layout handler
to combine the segmented candidate layouts into a full
layout according to pre-defined rules.

Still further, in accordance with a preferred embodiment
of the present invention, the selected layout is based on the
match of the components:

Additionally, in accordance with a preferred embodiment
of the present invention, the layout adapter and applier
includes: a component type conversion handler to convert
the type of each component in the handled component set to
the type of each matching component in the selected layout
and a component attribute applier to apply attributes to
components in the handled component set from the selected
layout. The layout adapter and applier also includes at least
one of: a dynamic layout handler to transfer over the
dynamic layout explicit anchors and relationships from the
handled component set to the selected layout; and a con-
tainer change applier to adapt containers from the handled
component set to the selected layout; and a split/merged
component handler to perform at least one of: splitting and
merging components in the selected layout; and a remaining
component handler to handle components which appear in
the handled component set but are not included in the
selected layout; and a post processor to perform reverse
transformations made by the page analyzer when necessary.

There is provided in accordance with a preferred embodi-
ment of the present invention, a method implementable on
a computing device. The method includes: storing at least
one layout and an associated signature where the signature
represents a semantic composition of the at least one layout;
generating an associated signature for a user supplied
handled component set; performing a comparison of the
signature of the user supplied handled component set with
the associated signature of the at least one layout stored on
the layout database; acquiring from at least the layout
database a set of candidate layouts according to the results
of the performing a comparison and where the candidate
layouts are visually different and semantically similar from
the user supplied handled component set; and adapting the
handled component set to a selected layout from the set of
candidate layouts.

Moreover, in accordance with a preferred embodiment of
the present invention, the method also includes retrieving at
least one of: new and updated website pages, templates and
manually created layouts from an associated application
repository and pages from external sources; and filtering and
ranking at least one of: the at least one layout generated by
the generating and the candidate layout.

Further, in accordance with a preferred embodiment of the
present invention, the signature is based on the semantic
classification categories of the components of the website
building system.

Still further, in accordance with a preferred embodiment
of the present invention, the user supplied handled compo-
nent set represents at least one of: an entire page and a subset
of components of the page.

Additionally, in accordance with a preferred embodiment
of the present invention, the candidate layouts are acquired

US 10,691,873 B2

5

based on at least one of: a full signature of the user supplied
handled component set, a partial signature of the user
supplied handled component set, at least one segment sig-
nature of the user supplied handled component set and an
automatically generated layout.

Moreover, in accordance with a preferred embodiment of
the present invention, the layout database is at least one of:
user specific and group specific.

Further, in accordance with a preferred embodiment of the
present invention, the comparison is based on at least one of:
semantic abstraction and semantic distance metrics.

Still further, in accordance with a preferred embodiment
of the present invention, the generating includes identifying
semantic links which connect at least two components in at
least one of: at least one website page, the user supplied
handled component set and building a relevant data struc-
ture; dividing at least one of: the at least one website page
and the user supplied handled component set into segments
based on at least one of: geometrical considerations, the
semantic links and dynamic layout anchors; extracting at
least one of: a full semantic signature and a partial semantic
signature in the at least one layouts and the user supplied
handled component set and where the extracting performs at
least one of: semantic type mapping of the components,
dividing sematic types based on visual properties of the
components and generating signature elements based on
multiple component semantic types. The generating also
includes at least one of: determining the page type of at least
one of: the at least one website page and the user supplied
handled component set; and splitting at least one component
of at least one of: the webpage and the user supplied handled
component set based on the content of the at least one
component; and filtering out unsuitable components for the
extracting; and uniting at least two components for layout
processing and signature extraction by the extracting; and
reducing the amount of different page signatures by per-
forming at least one of: using hierarchical signatures, con-
tainer flattening, container flattening and reconstruction,
single component container replacement; dominant type
selection and recursive implementation. The generating gen-
erates at least one of a single full page layout, multiple
partial page layouts, multiple segmented layouts and an
associated layout package after at least one of: the identi-
fying, the dividing, the extracting, the determining, the
filtering, the splitting, the uniting and the reducing.

Additionally, in accordance with a preferred embodiment
of the present invention, the hierarchical signature repre-
sents the original hierarchical structure of the at least one
layout.

Further, in accordance with a preferred embodiment of the
present invention, the components of the multiple partial
page layouts and the multiple segmented layouts are subsets
of the single full page layout.

Still further, in accordance with a preferred embodiment
of the present invention associated layout package com-
prises at least one of: the handled component set for the
webpage, page type indication, component and container
split/merge information, the dynamic layout anchors,
semantic links, component relevance information, page
screenshot, the associated signatures and the associated
webpages.

Additionally, in accordance with a preferred embodiment
of the present invention, the filtering and ranking includes:
comparing at least one of: the level of visual similarity
between the at least one layout and other layouts in the
layout database and the level of visual similarity between the
user supplied handled component set and at least one of the

25

30

35

40

45

55

6

candidate layouts; calculating a quality score in order to
filter out low-quality pages of at least one of: the at least one
layout and the candidate layouts based on at least one of
page statistical metrics, page visual attributes, content and a
layout quality rater learning system; ordering at least one of
the at least one layout and the candidate layouts according
to at least one of: component size matching, semantic
similarity to the signature of the user supplied handled
component set, and component size matching; and ensuring
visual diversity between at least one of the following pairs:
the user supplied handled component set and the candidate
layouts and the at least two layouts stored in the layout
database.

Additionally, in accordance with a preferred embodiment
of the present invention, the acquiring includes: performing
at least one of: retrieving the candidate layouts from the
layout database, completing partial candidate layouts and
combining of at least two of segmented candidate layouts;
performing at least one of: creating the automatically gen-
erated layouts based on the components in the handled
component set and completing the partial candidate layouts
retrieved by the performing at least one of: retrieving the
candidate layouts from the layout database, completing the
partial candidate layouts and combining of at least two of
segmented candidate layouts; and creating a match of com-
ponents between the handled component set and the candi-
date layouts where the match is at least one of: exact and
partial.

Additionally, in accordance with a preferred embodiment
of the present invention, the performing at least one of:
retrieving the candidate layouts from the layout database,
completing the partial candidate layouts and combining of at
least two of segmented candidate layouts comprises: receiv-
ing at least one of: a base component set of the handled
component set and a base component set of components
missing from an associated the partial candidate layout,
from the performing at least one of: retrieving the candidate
layouts from the layout database, completing partial candi-
date layouts and combining of at least two of segmented
candidate layouts and creating multiple possible algorithmi-
cally-generated layouts from the base component set. It also
includes at least one of: placing components from the base
component set into one column after the other and placing
components from the base component set in a main column
followed by a smaller side-bar and placing components from
the base component set according to pre-defined placement
rules.

Moreover, in accordance with a preferred embodiment of
the present invention, the performing at least one of: creating
the automatically generated layouts based on the compo-
nents in the handled component set and completing the
partial candidate layouts retrieved by the performing at least
one of: retrieving the candidate layouts from the layout
database, completing the partial candidate layouts and com-
bining of at least two of the segmented candidate layouts
includes: performing at least one of: receiving the handled
component set and the associated signatures, querying the
layout database using the associated signature, retrieving the
set of candidate layouts and coordinating completion of at
least one of: the partial candidate layouts and the segmented
candidate layouts retrieved from the layout database; send-
ing components missing from the partial candidate layouts
to the automatically generated layout handler and using the
resulting automatically generated layout to complete the
partial candidate layouts; and combining the segmented
candidate layouts into a full layout according to pre-defined
rules.

US 10,691,873 B2

7

Further, in accordance with a preferred embodiment of the
present invention, the selected layout is based on the match
of components.

Still further, in accordance with a preferred embodiment
of the present invention, the adapting includes: converting
the type of each component in the handled component set to
the type of each matching component in the selected layout;
applying attributes to components in the handled component
set from the selected layout; and at least one of: transferring
over the dynamic layout explicit anchors and relationships
from the handled component set to the selected layout; and
adapting containers from the set handled component set to
the selected layout; and performing at least one of: splitting
and merging components in the selected layout; and han-
dling components which appear in the handled component
set but are not included in the selected layout; and perform-
ing reverse transformations made by the generating when
necessary.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter regarded as the invention is particu-
larly pointed out and distinctly claimed in the concluding
portion of the specification. The invention, however, both as
to organization and method of operation, together with
objects, features, and advantages thereof, may best be under-
stood by reference to the following detailed description
when read with the accompanying drawings in which:

FIG. 1 is a schematic illustration of an example webpage
to be adapted;

FIG. 2 is a schematic illustration of a sample user inter-
face displaying a selection of possible alternative layouts for
the example webpage in FIG. 1, constructed and operative in
accordance with a preferred embodiment of the present
invention;

FIGS. 3A and 3B are schematic illustrations of a system
for producing visually diverse alternative dynamic layouts
for a website, constructed and operative in accordance with
a preferred embodiment of the present invention;

FIG. 4 is a schematic illustration of the relationship
between the concepts of page, layout, match and signature,
constructed and operative in accordance with a preferred
embodiment of the present invention;

FIG. 5 is a schematic illustration of the page analyzer of
FIGS. 3A and 3B, constructed and operative in accordance
with a preferred embodiment of the present invention;

FIG. 6 is a schematic illustration of layout splitting for an
end-to-end intersection case, constructed and operative in
accordance with a preferred embodiment of the present
invention;

FIG. 7 is a schematic illustration layout splitting for a
complex margin/content case, constructed and operative in
accordance with a preferred embodiment of the present
invention;

FIG. 8 is a schematic illustration of a page layout which
includes a container component;

FIG. 9 is a schematic illustration of a semantic tree which
includes container types;

FIG. 10 is a schematic illustration of container flattening,
constructed and operative in accordance with a preferred
embodiment of the present invention;

FIG. 11 is a schematic illustration of container flattening
and reconstruction, constructed and operative in accordance
with a preferred embodiment of the present invention;

FIG. 12 is a schematic illustration of problem cases in
container flattening and reconstruction;

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 13 is a schematic illustration of single component
container expansion and matching, constructed and opera-
tive in accordance with a preferred embodiment of the
present invention;

FIG. 14 is a schematic illustration of matching a virtual
component generated following dominant contained com-
ponent detection; constructed and operative in accordance
with a preferred embodiment of the present invention;

FIG. 15 is a schematic illustration of a suggested layout
construction for the recursive application method of con-
tainer handling, constructed and operative in accordance
with a preferred embodiment of the present invention;

FIG. 16 is a schematic illustration of layout to layout
mapping made possible through component splitting, con-
structed and operative in accordance with a preferred
embodiment of the present invention;

FIG. 17 is a schematic illustration of a simple semantic
tree;

FIG. 18 is a schematic illustration of a section of a
semantic tree showing use of semantic sub-types;

FIG. 19 is a schematic illustration of a stratified semantic
tree;

FIG. 20 is a schematic illustration of a stratified semantic
tree with paths of different length in the same strata;

FIG. 21 is a schematic illustration of the elements of the
layout filter and ranker of 3A and 3B, constructed and
operative in accordance with a preferred embodiment of the
present invention;

FIG. 22 is a schematic illustration of the implementation
of the layout searcher and generator of FIG. 3A, constructed
and operative in accordance with a preferred embodiment of
the present invention;

FIG. 23 is a schematic illustration of the implementation
of'the AGL handler of FIG. 22, constructed and operative in
accordance with a preferred embodiment of the present
invention;

FIG. 24 is a schematic illustration of the implementation
of the SBL handler of FIG. 22, constructed and operative in
accordance with a preferred embodiment of the present
invention;

FIG. 25 is a schematic illustration of a weighted semantic
tree;

FIG. 26 is a schematic illustration of a weighted semantic
tree with an extra component node;

FIG. 27 is a schematic illustration of the creation of partial
layouts, constructed and operative in accordance with a
preferred embodiment of the present invention;

FIG. 28 is a schematic illustration of an example of
handling a segmented layout constructed and operative in
accordance with a preferred embodiment of the present
invention;

FIG. 29 is a schematic illustration of attribute-based
component matching integrating semantic linking informa-
tion, constructed and operative in accordance with a pre-
ferred embodiment of the present invention;

FIG. 30 is a schematic illustration of the elements of the
layout adapter/applier of FIG. 3A, constructed and operative
in accordance with a preferred embodiment of the present
invention; and

FIG. 31 is a schematic illustration of joint result diversi-
fication for multiple layout database queries, constructed
and operative in accordance with a preferred embodiment of
the present invention.

It will be appreciated that for simplicity and clarity of
illustration, elements shown in the figures have not neces-
sarily been drawn to scale. For example, the dimensions of
some of the elements may be exaggerated relative to other

US 10,691,873 B2

9

elements for clarity. Further, where considered appropriate,
reference numerals may be repeated among the figures to
indicate corresponding or analogous elements.

DETAILED DESCRIPTION OF THE PRESENT
INVENTION

In the following detailed description, numerous specific
details are set forth in order to provide a thorough under-
standing of the invention. However, it will be understood by
those skilled in the art that the present invention may be
practiced without these specific details. In other instances,
well-known methods, procedures, and components have not
been described in detail so as not to obscure the present
invention.

An alternative way for a user to update or change their
website is to change the layout of a current website based on
the content and structure within so that only the actual layout
changes and the content is preserved. Current systems
typically run algorithms that search for a layout visually
similar to the model layout provided by the user.

Applicants have realized that an alternative method may
be a system that may generate a layout which is visually
different from the model layout, but is sufficiently equivalent
to be able to store and present the same underlying content.
These layouts may be used to provide design alternatives to
an existing page design created by a user, to provide
suggested layouts for data collections which do not have a
current design (such as imported data which has yet to be
organized) and to allow pages created using a given template
to be used with alternative templates.

Applicants have further realized that the stored layouts
may be dynamic and may also be subject to dynamic layout
processing as discussed in US Patent Publication No 2013-
0219263 entitled “A Server Based Web Site Design System
Integrating Dynamic Layout and Dynamic Content” pub-
lished 22 Aug. 2013, incorporated herein by reference and
assigned to the common assignee of the current invention.
Therefore, the stored layouts may automatically be adapted
for different amounts of component content.

It will be appreciated that a set of relevant components on
a page or a part thereof (i.e. a subset of the components in
a page) may be considered a given handled component set
as described in more detail herein below. Applicants have
further realized that it is possible to provide a diverse set of
high-quality semantically-equivalent layout alternatives for
a given handled component set. Thus, a designer could apply
a selected suggested layout to the handled component set. It
will be appreciated that such a system may also allow
designers to add complementary information to their layout
designs which could support the system in locating these
designs and even apply them at a later stage to the handled
component set.

Reference is now made to FIG. 1 which illustrates an
example page to be adapted. The page contains one picture
component P1 and 3 text components T1, T2 and T3. These
components may be considered the handled component set.

Reference is now made to FIG. 2 which illustrates a
pop-up menu which is activated by pressing (as an example)
the “Magic Layout” button. This pop-up menu displays the
result of a query made against a layout database using the
specific handled component set or an automatically gener-
ated layout based on the specific handled component set (as
discussed in more detail herein below). The pop-up menu in
this implementation displays an outline of each of the
suggested layouts. In this implementation, whenever the
designer may hover his cursor over one of the suggested

10

15

20

25

30

35

40

45

50

55

60

65

10
layouts in the pop-up menu, the edited page is temporarily
adapted to the suggested layout pointed to by the mouse.

Applicants have further realized that such a system may
provide a layout marketplace to designers which may pres-
ent to a user layouts that have been prepared in advance for
use by the system, layouts collected from various sources
(and possibly filtered for diversity and quality) and auto-
matically generated layouts created based on the compo-
nents in the handled component set and layout creation rules
(as described in more detail herein below).

Applicants have realized that searching for layouts which
are semantically equivalent or close to the handled compo-
nent set (the current page) may be done by extracting (one
or more) signatures which represent the semantic composi-
tion of the handled component set and the pre-indexed
layouts. It will be appreciated that the handled component
set is the collection of components used for layout searching
(which is also subject to layout modification), whereas the
signature is a string or vector which includes semantic
information about the handled component set in a summa-
rized form.

Each signature may include a count of the number of
semantic component types at various level of details (e.g. [1
text, 2 images, 1 gallery] or [3 visuals, 1 gallery]) as
discussed in more detail herein below.

Reference is now made to FIGS. 3A and 3B which
illustrate a system 100 for generating visually diverse alter-
native dynamic layouts for a website according to an
embodiment of the present invention. FIG. 3A illustrates
system 100 during finding visually diverse and semantically
similar candidate layouts for an incoming request page and
FIG. 3B illustrates layout collection and indexing. System
100 comprises a client 5 and a server 15. Server 15 may
further comprise an application manager 10, an application
repository 20, a page editor 30, a page spider 41, a page
analyzer 44, a layout filter and ranker 45, a layout adapter
and applier 50, a layout searcher and generator 60, a layout
database 70 and a layout database coordinator 75. Layout
database coordinator 75 may further comprise a signature
comparer 77 as described in more detail herein below.
Application repository 20 may hold versions of the pertinent
website pages which may be retrieved by application man-
ager 10 when required, as well as additional related data
(such as application metadata and dynamic layout informa-
tion). Page editor 30 may be a suitable graphical user
interface which may allow editing of pages and may act as
an interface between the user and system 100 when provid-
ing manual input to the process. Page editor 30 may also
comprise a previewer 32 so that previews of layouts and
final adaptations may be presented to the user as described
in more detail herein below.

As is illustrated in FIG. 3A to which reference is now
made, page analyzer 44 may pre-process and analyze an
incoming user page supplied via page editor 30. Layout
searcher and generator 60 may search layout database 70
according to the given handled component set of the incom-
ing user supplied page and may locate candidate layouts and
perform result matching. Layout filter and ranker 45 may
perform filtering and ranking on the candidate layouts.
Layout adapter and applier 50 may adapt the handled
component set to a new selected layout, chosen by a user
from a set of compatible candidate layouts. Layout searcher
and generator 60 may also generate a number of additional
automatically generated layouts to be ranked and possibly
presented to the user together with the layouts located in the
layout database 70 (as described in more detail herein
below).

US 10,691,873 B2

11

As is illustrated in FIG. 3B to which reference is now
made page analyzer 44 may pre-process and analyze an
incoming webpage retrieved by page spider 41 to produce
candidate layouts which are filtered and ranked by layout
filter and ranker 45 before being stored on layout database
70 for use for layout searching and generating as described
herein above

It will be appreciated that a single system 100 may
comprise more than one layout database 70. The elements of
system 100 are discussed in more detail herein below.

Layout database 70 may store layouts based on pages
collected from multiple sources together with associated
layout packages as described in more detail herein below.
Layout database 70 may also store the full pages from which
layouts may be extracted to be presented when required.
Layout database 70 may be a user-specific layout database
or a group-specific layout database or both as described in
more detail herein below. It will be appreciated that system
100 may comprise of more than one layout database 70 of
differing quality layouts. Typically, the best quality is that of
a manually created layout, followed by layouts based on the
current website building system designer sites followed by
that of external designers as discussed in more detail herein
below.

It will be appreciated that server 15 may be a separate
server or one of the regular system servers. Some of the
functionality of the server may also be implemented on
client 5 as well (such as expanding the query based on
semantic type equivalence, and passing such expanded
queries to the server to be resolved as described in more
detail herein below).

It will also be appreciated that server 15 may also include
options to explicitly insert, modify or delete layouts—so that
employees of the website building system vendor may
insert, modify or delete specific layouts. This may also be
relevant, for example, for a user-specific layout database 70
which may allow a user to manage his or her layout
repository.

It will be further appreciated that the architecture of
system 100 may be described in terms of page, layout and
match as is illustrated in FIG. 4 to which reference is now
made. As discussed herein above, a signature (used for
searching) may be extracted from the layout. It will be
appreciated that the layout (L.1) may be similar to the page
(P1), but with the background and decorations removed. The
signature extracted from layout L1 (as described in more
detail herein below) may be compared against other signa-
tures of pre-prepared layouts held in layout database 70. The
match (M1) may be a subset of the layout fields in L1,
matched against the layout fields of a selected layout from
layout database 70 as described in more detail herein below.

Page P1 may be the complete visual entity handled by
system 100 as shown to the user. It may be a full website
building system page (as described above), or a part thereof
(if the system supports page partitioning—automatic or
manual—which allows parts of a page to be handled).

Page P1 may include actual components (some of which
form part of the layout L1 (as shown in FIG. 4), decoration
components, components from templates, a header, a footer
etc. and various page-level attributes not related to any
specific component (e.g. a generic background color or style
guideline).

Layout L1 may be the set of actual components from P1
to be matched (on both the incoming page request side and
on the layout database 70 side)—this is the level at which the
layout searching and matching may be performed as
described in more detail herein below. As is illustrated in

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 4, L1 may differ from the set of components in P1 since
it does not contain any decoration components and does not
contain any components which should not be part of the
matching process—as determined by system 100 or marked
by the user as described in more detail herein below. This
could be due to their type (for example), or by an arbitrary
user decision.

Layout L1 may also omit locked components. System 100
may allow a user to define locked components which are
locked in position. Such locked components may not par-
ticipate in the searching and matching processes (and may
also be excluded from additional system processes such as
dynamic layout). Layout L1 may also be limited through
specific manual selection by the user, e.g. “suggest alterna-
tive layouts for components X and Y and Z only (and leave
the other page components in place)”.

Layout L1 may also contain new components (which are
not present in P1) generated from existing page components
through component splitting and uniting. [.1 may also con-
tain components generated or modified due to container
processing as discussed in more detail herein below. Layout
L1 may also contain information on component relation-
ships generated through semantic analysis of the compo-
nents in the page, e.g. “define component A and B as linked
component pair (caption+picture) and suggest alternative
layouts which have a similar linked component pair”.

For all candidate layouts that are found, system 100 may
match between the current user layout and a candidate
layout. The subset of components (in each of the two
matched layouts) may be called a match, i.e. there is a
current user layout match and a candidate layout match.

It will be appreciated that the matched components on
each side of the match (the handled component set of the
incoming request page/candidate layout) are matched but are
not identical—they may typically have different size and
position, and may very well have different types. There may
also be remaining components on both sides—contained in
the layout but not in the match. Their handling is discussed
herein below.

It will be further appreciated that system 100 may main-
tain the two way relationship between the various elements
of' page P1, layout L1 and match M1. This way any changes
(in layout or content) applied to elements of Layout L1 (for
example), may also be applied to the corresponding ele-
ments on page P1.

A set theory containment relationship may typically apply
between the three entities, i.e. MatchCLayoutCPage (sub-
ject to the multiple exceptions noted above such as split/
united components). However, this is not geometrical con-
tainment, i.e. non-layout components may be geometrically
intermixed with layout components.

It will also be appreciated that layout database 70 may be
indexed according to the signatures extracted from the
layouts. Layout database 70 may also store an associated
layout package containing information regarding associated
pages, dynamic layout anchors, semantic links, signatures
etc. together with the layouts as described in more detail
herein below. Such layout package may contain the full
original pages—allowing the system to easily re-extract the
signatures if the signature extraction algorithm is modified.
In an alternative embodiment, layout database 70 may be
implemented using the layouts alone, and the minimal
information needed to perform semantic link matching
(without any additional information)—the non-layout page
components may be discarded and not stored in layout
database 70.

US 10,691,873 B2

13

System 100 may also store in layout database 70 a screen
shot of the original page, so to present to the user a “full
view” of the suggested layouts, and not just an abstract
layout view. System 100 may also store a pre-processed
version of the layout suitable for quick generation of a
preview of the suggested layouts with the user content.

It will be appreciated that system 100 may be aimed at
designers using a typical website building system and as
such may run within the context of the typical website
building system. Thus, a large amount of data may be
available to system 100—far more than that available to a
layout selection system aimed at regular (non-typical web-
site building system—based) web sites. This is particularly
correct for fully on-line typical website building systems.

For example, system 100 may collect actual data on
layouts that were displayed to designers, and the specific
layouts that were actually selected, and use this data in rating
layouts for display. Such statistical data may also extend to
end-user (rather than designer) activities. Thus system 100
may, for example, use the information on the number of
actual views for a given page (i.e. its end-user access
statistics—not just designer access statistics).

As discussed herein above, system 100 aims to provide a
diverse set of high-quality layout alternatives. Thus, the
layout searching process does not aim to find layouts which
are visually similar to the handled component set, but rather
layouts which are visually different from the handled com-
ponent set, but still contain a similar (or at least semantically
equivalent) composition of components. An example of this
may be a house built from Lego™ blocks (commercially
available from the LEGO Group). If Lego creations are
equated to web-pages and the Lego blocks to components,
system 100 may offer the user different creations which use
the same or similar set of blocks (contained in the house) but
may not necessarily be in the form of a house.

It will be appreciated that a diverse set query results is
desirable, i.e. relevant results which are not only visually
different from the handled component set, but also differ
from each other. It will be further appreciated that the results
should furthermore be high-quality. Thus, system 100 may
rank results according to their design quality (as described in
more detail herein below), removing low quality results, and
displaying the results in decreasing order of quality.

It will also be appreciated that since the last two require-
ments (diversity and quality ranking) interact, the actual
display order of the layout found may be based on a
combination of quality and diversity requirements—as well
as semantic similarity to the handled component set. This
way, high-diversity results (i.e. matching layouts which are
substantially different from other matching layouts) may
have a higher display priority than a value assigned simply
based on their quality.

It will be appreciated that page spider 41 may gather and
index new and updated pages, templates and manually
created layouts from application repository 20. Page spider
41 may also acquire pages from external sources 25 (e.g. via
the internet), keeping a retrieval link to original page for use
in updates (based on integration with the website building
system), and possibly a copy of the full original page. It may
also acquire layouts manually created for system 100 and
system templates (full-page and partial). This could be based
on the amount of usage/viewing for the specific template.
Page spider 41 may also acquire designer-created pages
which may be created by designers internal to the website
building system vendor (e.g. internal design studio) or other
designers (e.g. designer arena, general designer population).
It may be appreciated that in this scenario, this would be

20

30

35

40

45

14

subject to privacy requirements—the designer may specify
the availability of his or her layouts for other designers to
use with a default privacy policy applied. Such privacy
options may include “allow using pages”, “do not allow
using pages” and “allow using in outline format only™ (i.e.
removing actual content from the page). The selection of
which pages to use may be further based on popularity
criteria, such as only from designers having a given expe-
rience, only from designers which created more X web
sites/pages through the system or only from designers given
an explicit rating above X (in systems which support
designer/end-user feedback to designed pages).

The selection may also be based on the amount of use of
the given page/template by the designer itself or other
designers, based on the number of views for the specific
page or the website containing it, based on registration/
participation of the designer in a layout marketplace (as
described in more detail herein below) and also based on a
manual “featured layout” indication (similar to featured/
promoted search results in a search engine).

It will be appreciated that page spider 41 may run just
once when layout database 70 is set up, may be manually
initiated, may be set to run at fixed time intervals, may be set
to run when there are changes (exceeding a certain thresh-
old) made to application repository 20, on every save or
based on designer submissions.

As discussed herein above, system 100 may also support
group-specific layout databases 70 which store a set of
layouts for use by certain groups of users (e.g. defined by the
website building system vendor or by the users themselves).
It will be appreciated that for group-specific layout data-
bases 70, Page spider 41 may collect as noted above but
possibly also allow editing by an assigned group manager
(e.g. a vertical market manager defined by the website
building system vendor).

System 100 may also support user-specific layout data-
bases 70 which store a set of layouts for use by a given user.
For user-specific layout databases 70, Page spider 41 may
include arbitrary pages as desired by the user, who may
manage his or her layout database content.

It will be appreciated that the aim of system 100 is to
retrieve pages and create from them full page layouts (when
found). It may also extract a set of possible partial layouts
and may also segment the page (whenever possible) so that
layout searcher and generator 60 may find matching segment
layouts (and combine them) as described in more detail
herein below.

As discussed herein above page analyzer 44 may analyze
and pre-process an incoming webpage in order to generate
layouts with associated signatures and layout packages as
described in more detail herein below. Page analyzer 44 may
also receive an incoming request page from a user via editor
30 together with an associated handled component set which
may represent either the entire page or a partial set of
components of the page in order to generate full page, partial
page and segments of component with their associated
signatures and layout packages as described in more detail
herein below. Such pre-processing may include component
splitting, unification and modification as well as the creation
of semantic relationships between components which may
affect any adapting later on in the process. Component
modification may include container handling in particular.
The pre-processing may also involve splitting the entire
layout into two or more layouts (partial layouts), which may
require more than one signature (as discussed in more detail
herein below). It will be appreciated that page analyzer 44
may not modify the original layout of the pertinent page

US 10,691,873 B2

15

(which can be a handled component set or a pre-stored
layout) but instead may create alternative versions with a
2-way mapping between the components in each layout.
These alternative layouts may be the ones used to be
presented as candidate layouts for retrieval by layout
searcher and generator 60. Page analyzer 44 may include
information about this 2-way mapping together with the
generated layout, and may include additional hints about the
handling of the generated layout when matching it to
retrieved layouts. The mapping and the hints are later
handled by layout searcher and generator 60 as described in
more detail herein below.

Reference is now made to FIG. 5 which illustrates the
elements of page analyzer 44. Page analyzer 44 may com-
prise a page type identifier 140, a semantic link handler 141,
a layout splitter 142, a container handler 143, a component
splitter 144, a component filter 145, a component merger
146 and a signature extractor 147.

It will be appreciated that page analyzer 44 may support
the ability of system 100 to find matching layouts for an
incoming request page on one hand and may also increase
the accuracy (i.e. precision of the found layouts compared to
the requirements) on the other. While usually there is a
tradeoff between the two, the processing performed by page
analyzer 44 may include methods to increase the coverage
without harming the accuracy, and other methods to improve
accuracy with limited effect on the coverage.

It will be appreciated the page analyzer 44 may be used
by system 100 during different stages of the process. During
layout collections and indexing when page spider 41
retrieves pages for potential layouts, it may analyze them in
order to produce derived layouts with associated signatures
as well as other associated information which may be used
later on in the process (as described in more detail herein
below). During runtime, when layout searcher and generator
60 searches for suitably matching layouts for an incoming
page request from a user (as described in more detail herein
below), it may be used to analyze and pre-process the
incoming page in order to extract the associated signatures
from the handled component set ready for use for the
matching process (as described in more detail herein below).
Therefore in the discussion below concerning page analyzer
44, some processes describe its use during layout collections
and indexing and some during the processing of an incoming
request page for use by layout searcher and generator 60.

As discussed herein above, a set of relevant components
on a page may be known as a handled component set. A
handled component set may be full-page representing the
entire page or partial-page representing a partial section of
a page. A handled component set may also represent a mere
segment of a page too.

A full-page handled component set may include the set of
components in the page itself which may include or exclude
components inherited from a full-page template (also known
as a master page). It may also include a specific full-page
template or both components and a template together with
the matching header and footer.

A partial-page handled component set may include just
the site header or footer, the components contained in a
given single-page container, the components contained in a
given mini-page of a multi-page container or components
defined inside list applications discussed in US Patent Pub-
lication No. 2014/0282218 entitled “Device, System, and
Method of Website Building by Utilizing Data Lists™ pub-
lished 18 Sep. 2013, incorporated herein by reference and
assigned to the common assignee of the current invention. A
partial-page handled component set may also include the

10

15

20

25

30

35

40

45

50

55

60

65

16

components in a single inherited component set template
and an arbitrary subset of the components in a page (e.g.
selected using multi-selection).

It will be appreciated that the set of components (in both
cases) will be the one affected by the selected layout of a
user, i.e. these are the components which would be moved/
resized according to the selected layout.

It will also be appreciated that components coming from
a template may include components from a page template
(master page), common page headers/footers, component set
templates and views inside list applications. Such template-
originated components may participate in the handled com-
ponent set for the purpose of retrieval of layouts via the
given handled component set.

However, the resulting handled component set layout
changes do not affect the original template since changes to
the original templates layout may create unpredictable side
effects on other pages using the same templates. This may be
implemented by copy-on-use website building systems and
inherit-on-use website building systems.

In copy-on-use website building systems, the components
in the template are copied to the page upon creation, but then
become regular page components and are not linked to the
original template anymore. In this scenario, there is no
problem in modifying template-originated components lay-
out, as these are separate copies and the original template is
not affected.

In inherit-on-use website building systems, the template-
originated components displayed in the page are actually
instances of the template components and retain their link to
the original components (in the template). In this scenario,
such components may be included in the handled component
set only if the website building system implements local
modifiers, i.e. the ability to create local changes to specific
attributes of template-originated components, with these
changes stored together with the specific instance. The
layout modifications to template-originated handled compo-
nent set components would then be stored as such local
modifiers.

It will be appreciated that system 100 may support a
notion of general page type selected from a short list of
possible page types—page type taxonomy. Such taxonomy
may include, for example, home page, informational page,
contact form page and forum page. Page type determination
may apply to both the indexed pages and the handled
component set.

Page type identifier 140 may recognize the type of page
to be processed and may allow the user to limit processing
to only to pages whose type match that of the handled
component set (including pages whose type could not be
determined). Alternatively, all page types may be processed.
If the handled component set is a partial-page handled
component set, page type identifier 140 may determine that
a page type does not apply.

Page type identifier 140 may determine the page type
using the page type set for the page when it was created (in
the specific instance or in the template from which the page
was inherited). For example, the Wix system (Www.wix-
.com) allows the designer to select the following page types
when creating a page: blank, about, services, contact, blog,
gallery, site content, music and video, online store.

Page type identifier 140 may also determine the page type
by using automatic recognition based on visual features of
the page (as is described for example in article by Christian
K. Shin, David S. Doermann—1999 “Classification of docu-
ment page images based on visual similarity of layout

US 10,691,873 B2

17
structures” http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.42.9759&rep=repl&type=pdf).

It will also be appreciated that a page may be un-typed i.e.
a designer may base it on a blank template (which has no
pre-specified type), and an automatic type determination
algorithm might also fail to classify a given page.

It will be further appreciated that the page type taxonomy
given above refers to generic page types. System 100 may
use alternate or additional page type taxonomies, such as
these referring to vertical markets (e.g. musicians, photog-
raphers etc.). In this case page type identifier 140 may
analyze the semantic structure of the page and actual content
(e.g. text or image field content) to determine a detailed page
type, and use this type for later layout database selection and
querying (e.g. having a specific layout database for musician
web sites etc.).

Semantic link handler 141 may implement semantic links
which connect two or more components. These may be used
by component merger 146 and component splitter 144 as
discussed in more detail herein below. It will be appreciated
that semantic links connect components which were related
in some way in the original layout or page, including (for
example) components identified as related or “should be
nearby” during page pre-processing, such as an image and
its associated caption.

Semantic link handler 141 may also implement a semantic
link which does not allow an interfering component (of
specific types or of any type), i.e. it is permissible for linked
component A and B to be further from each other, as long as
no component C (of a given type or of any type) is between
them.

Semantic link handler 141 may also connect components
created due to component splitting, such as a text component
which was split into two text components (heading and body
components). Semantic link handler 141 may also connect
components based on existing dynamic layout anchors con-
necting the two components.

It will be appreciated that semantic links may be used later
on in the matching process so that when a component
matching is performed (i.e. components in the handled
component set and the candidate layout are matched), pri-
ority is given to satisfying the semantic link requirements as
described in more detail herein below.

Semantic link handler 141 may also implement multi-
component semantic types such as the ImageWithCaption-
Text semantic type. Such types provide an additional way to
represent the existence of a semantic link between multiple
components, and match such semantically-linked compo-
nents with similar sets of semantically-linked components in
other layouts.

Layout splitter 142 may perform layout splitting if the
layout can be easily divided into two or more sub-layouts.
For example, a two-way horizontal or vertical splitting may
be used based on the H/V slicing algorithms described US
Patent Publication No. 2015/0074516 entitled “System and
Method For Automated Conversion of Interactive Sites and
Applications to Support Mobile and Other Display Envi-
ronments” published 12 Mar. 2015, incorporated herein by
reference and assigned to the common assignee of the
current invention. Such splitting is further demonstrated in
FIG. 6 to which reference is now made. Layout A is split into
two sub-layouts B and C which are used for further layout
searching. It should be noted that component d in layout A
is assigned to layout B even though some part of it crosses
into the area “covered” by layout C.

Layout splitter 142 may also apply a more complex
division, such as the one demonstrated in FIG. 7 to which

10

15

20

25

30

35

40

45

50

55

60

65

18

reference is now made, which is based on locating “clear
pathways” through the split layout, rather than using end-
to-end intersecting lines. In this example, layout splitter 142
splits the “frame/margins” area A from the “internal content”
area B—possibly representing menus and content area
respectively. Layout splitter 142 may also implement sepa-
ration of an internal region from its enclosing “frame”.

Layout splitter 142 may apply various limits and param-
eters, e.g. minimal number of components per split region
and may also split pages by visible page structure, employ-
ing image processing techniques such as analysis of regions
having higher level of “activity” or more details.

It will be appreciated that the discussion above regarding
layout splitter 142, covers the scenario in which a user may
request from system 100 an alternate layout for an arbitrary
subset of the components in page.

Furthermore, layout splitter 142 may divide the page into
segments in any manner (such as illustrated in FIG. 7), and
system 100 may try to locate alternative layouts for each of
the segments. Suggested layouts may in general be adapt-
able to any required target area size. However, in practice,
there could be many constraints and limitations on the
possible target sizes, e.g. due to objects having specific size
or aspect ratio limitations (such as pictures which need to
retain their aspect ratios, third party applications which only
provide instances with specific sizes, Facebook like buttons
which can only be displayed in certain sizes etc.)

Thus, in both cases above (arbitrary handled component
sets and arbitrary page segments), the located alternative
layouts may not be accurate or easily adaptable to the target
area. In particular, since system 100 does not know in
advance what the expected target area size for the layout is,
there is no way to manually create in advance high-quality
layouts which are optimized for a given target area size.

Furthermore, in the first case (in particular) there may be
additional components (not included in the handled compo-
nent set) which intersect with the suggest layouts. In such a
case, even if the system locates layouts with the same
dimensions as the handled component set, these layouts may
likely intersect with the additional components and may
create a non-aesthetic result.

However, many web sites are vertically-oriented—they
have a fixed width and the pages can only be scrolled
vertically (if at all). This is a direct result of the well-known
propensity of web user for pages which only scroll verti-
cally. Furthermore, the fixed width is typically selected from
a very small set of common predefined widths (e.g. match-
ing the typical display screens’ horizontal resolutions).
Thus, a variant of the system can be optimized for this
common case of vertically-oriented pages using a width
selected from a small set of predefined widths.

In this variant, websites are created using one of pre-
defined widths (though the pages may vary in height) and are
marked with this width.

Manually created layouts are also created and optimized
for one of the predefined widths, and are marked as opti-
mized for the given width.

Layout searcher and generator 60 may search for layouts
the search to layout marked with a given width—the one
associated with the web site.

When selecting a handled component set, the user may
only select an entire page or a full vertical segment of a page
(which include all of the components in a given vertical
range [yl .. .y2]). The containment definition may refer to
components fully contained in the range, or to components
intersecting the range. Thus, layout splitter 142 is limited to

US 10,691,873 B2

19

splitting the page vertically, i.e. using end-to-end horizontal
line to cut it into full-width segments.

Thus, when searching for candidate layouts, system 100
can be sure that all suggested layouts will fit their position
in the page perfectly. Since the page width is identical to that
of each handled component set or segment, layouts created
for full pages will also be used (and are optimized) for each
such handled component set or segment.

Furthermore, since each segment essentially includes all
components between yl and y2 (y1<y2), when system 100
replaces the segment with a suggested layout, the compo-
nents above the segment (V,,.,<y1) may remain the same,
and the components below the segment (y,,,>y2) may
follow directly the new layout of the affected segment,
regardless of the new segment layout’s height. Thus, there
would be no overlapping between unaffected components
and the new segment layout on either x or y axis.

Container handler 143 may implement a number of meth-
ods for the handling of container components. In order to
lower the amount of different page signatures (and by that,
cover more user pages), container handler 143 may remove
containers, add them or join them together. Container han-
dler 143 may create a modified version of the page which
may include change or removal of components (and of
containers in particular), as well as re-rooting of compo-
nents, e.g. re-assigning a component belonging to a con-
tainer X so it would belong to the parent page or to a
different container Y. Container handler 143 also creates a
two-way mapping between the original page and the modi-
fied page, so that any later component matching performed
against the modified layout could be combined with the
mapping to create a component matching for the original
page.

It will be appreciated that the methods employed by
container handler 143 described below may be applied to the
processing of both the handled component set and layout
database 70 (as discussed in more detail herein below). Both
the handled component set and layout database may use
multiple methods, and container handler 143 may also
implement a method (or a combination thereof) for the
handled component set which is different from that imple-
mented for layout database 70.

The following paragraphs discuss each specific method,
and then discuss under what conditions and in what ways
can these methods be combined or otherwise used together.
Reference is now made to FIG. 8 which illustrates a simple
layout showing one container with one text element and four
pictures, and additional text elements and pictures outside of
the container.

The first method is hierarchical signatures. In this method,
container handler 143 may retain the hierarchical structure
of the container and this is reflected in the hierarchical
signature as described in more detail herein below. For
example, the (string-representation) signature for the com-
ponent set of FIG. 8 may be “1xContainer(1xText,4xPic),
2xText,2xPic”.

It will be appreciated that system 100 in general may
regard all containers types as a single semantic type (e.g.
have only one “container()” keyword). Alternatively, sys-
tem 100 may support multiple container semantic types,
creating signatures such as “IxGallery(1xText,2xPic),1x
Box(2xText)”.

It will be appreciated that a semantic type tree is a tree of
type in which similar types are united under a parent node
which represents a more abstract type matching any of the
sibling types (e.g. “visual” can match to both “image” and
“video”) as is illustrated in FIG. 9 to which reference is now

10

15

20

25

30

35

40

45

50

55

60

65

20

made. It will be further appreciated that an abstraction
process is a process in which a signature (defined using a
series of types and quantity of object of each type) may be
transformed by replacing each type with a more abstract
parent type (in reference to a given semantic type tree).

In this scenario, the container types may also be included
in the semantic type tree, and the abstraction process may
apply to them as well.

Container handler 143 may also implement identical
sub-tree merging (similar to the use of common sub-expres-
sion elimination in compiler optimization technique). In this
scenario, a signature of the form “1xContainer(1xText,4x
Pic),1xContainer(1xText,4xPic)” would be folded into
“2xContainer(1xText,4xPic)”. Such folding may occur dur-
ing the abstraction process, as multiple container types (e.g.
the “Gallery” and “Box” above) are both abstracted into the
higher level type “container”, as is shown in the signature
sequence below (using the type hierarchy defined in FIG. 9):

Stage Signature Comment
1 1 x Gallery(l x Image, 2 x Single Initial
Line), 1 x Box configuration
(1 x Image, 2 x Multi Line)
2 1 x Gallery(1 x Image, 2 x Text), Both single and
1 x Box (1 x Image, 2 x Text) multi line
converted into
text
3 2 x Container(1l x Visual, 2 x Non- Gallery and box
visual) converted into
generic
container, and
then folded
4 2 x Container(3 x Component) Using generic

components in
container

Container handler 143 may match containers represented
in hierarchical signatures to containers in the located layout
in multiple ways (at the actual component matching stage).
For example, a page with two containers (A, B) having
similar underlying content may be matched against a located
template with two containers (C, D) in two ways (A-C, B-D
or A-D, B-C).

It should be noted that (as shown in FIG. 9) the hierarchy
for container components is essentially separated from that
of regular components—a container would not be abstracted
into a regular component.

Container handler 143 may remove containers (at all
levels) so that all components reside directly in the contain-
ing page. This requires changing the x and y coordinates of
all fields so that they would be relative to the main page
instead of the “flattened” container. Reference is now made
to FIG. 10 which illustrates an example of container flat-
tering. Layout A may be converted into a simplified layout
B, removing multiple containers in the process. Note that
some components (marked with ‘a’) may have associated
frames which may be retained.

Container handler 143 may match components against
layout components of arbitrary locations, so the general
structure (and container hierarchy) of the layout would not
be preserved.

Container handler 143 may also flatten containers and
search for a layout according to the separate contained
components (as in the regular container flattening method
described herein above). However, when a match is found,
for each set of components in the located layout which
match original layout components from a single container,
container handler 143 tries to reconstruct a new container

US 10,691,873 B2

21

which tightly wraps the matching components in the located
layout as is represented in FIG. 11 to which reference is now
made. Original layout A comprises containers a (containing
components [b, ¢, d]), i (containing components [e, f]) and
j (containing components [g, h]).

Container handler 143 may perform the flattening phase
(D to create a simplified (flat) layout [B] in which the
non-container components [b, ¢, d, e, f, g, h] all reside at the
top page level. Container handler 143 may keep a compo-
nent/container mapping between A and B.

Container handler 143 may then perform a search and
component matching phase (II) in which it locates a layout
C which has the matching components [b', ¢!, d', €', {, g',
h'l—which are arranged in a different way than the original
components in layout B.

Based on the A <> B mapping and the B<> C component
matching, container handler 143 may perform a container
reconstruction phase (III) in which new containers [1', j', a']
are generated to create a modified layout D. For each set of
components in C which match a set of components in B that
was originally in the same container (e.g. the set [b', ¢', d']
which match [b, ¢, d] originally in container a).

Container handler 143 may create a tightly wrapping
rectangle around the components using a minimal enclosing
rectangle. Container handler 143 may then expand the
enclosing rectangle by a given pre-specified margin (possi-
bly modified based on available space, container size, com-
ponent sizes, component spacing and other geometrical
parameters).

Container handler 143 may create a new container (e.g. a')
which wraps the matching components ([b', ¢', d'] (in the
example) based on the generated rectangle. Thus, container
handler 143 may reconstruct a variant or the original struc-
ture. Note that as shown in FIG. 11, the generated containers
[1,j', a'] have different size and positions than the original [i,
j, a]. Furthermore, in systems which support multiple con-
tainer types, the specification for layout database 70 layout
C may include guidelines for container creation (e.g. con-
tainer types and other attributes) used when creating the new
containers.

Reference is now made to FIG. 12 which illustrates a
number of cases in which container flattening and recon-
struction may be difficult or outright impossible. In each of
the illustrated scenarios, [X'] represents an object (compo-
nent/container) which is located in a suggested layout and
matched to the original object [x] in the handled component
set.

In scenario (I), in the original layout A, the original
component ¢ was outside of the original container d. How-
ever, in the matched layout A' the matched component ¢'
intersects the reconstructed container d'.

In scenario (II), in the original layout A, the original
component ¢ was outside of the original container d. How-
ever, in the matched layout A' the matched component ¢'
actually overlaps the reconstructed container d'. It will be
appreciated that in spite of this overlap ¢' may be logically
separated from (and not contained in) d' so for example if d'
is moved c¢' will not move with it.

In scenario (III), in the original layout A, the original
containers ¢ and f are disjoint. However, in the matched
layout A' the constructed containers ¢' and f' intersect.

In scenario (IV), in the original layout A the original
containers ¢ and f are disjoint. However, in the matched
layout A' the constructed containers €' and f' are “mixed”—
each of them containing some components belonging to
other container as well. In fact, ' and f' may become almost
identical, or one of them may contain the other.

10

15

20

25

30

35

40

45

50

55

60

65

22

It will be appreciated that there may be multiple problem
cases involving different containers, and there may be dif-
ferent problem cases at different containment levels.

Container handler 143 may attempt to resolve the simpler
cases (e.g. scenario (I) above) by moving or modifying the
size of the container (and its contained components) or the
intersecting components. However, not all cases may be
resolved, and container handler 143 may be required to filter
out the un-resolvable cases.

Container handler 143 may apply single component con-
tainer handling to a container with a single contained
component—it may be regarded as an instance of just the
contained component, e.g. Container(pic)—=pic. This is dif-
ferent from flattening of the single-component container (as
described above), since the original contained component is
replaced with a new version having the size of the container
in the original layout (rather than the size of the original
contained component).

Container handler 143 may deduct a given margin (fixed
parameter or relative to container size) from the container
size after the matching process (as discussed in more detail
herein below) to get the size of the final matched component.

Reference is now made to FIG. 13 which illustrates single
component container expansion and matching. The handled
component set A includes a container a with the single
picture component b (and also three text fields on the right).
Container handler 143 may pre-process A into A' which
includes the single (expanded) picture component a' having
the same size and position as the pervious container a (as
well as the 3 text fields).

Container handler 143 may then match A' with the layout
B from layout database 70 which has a larger picture field on
the bottom d, as well as 3 text fields on the top.

Container handler 143 may then merge the selected layout
B and the content from A' are to form the new page C. In
page C, container handler 143 uses the area e at the lower
part of the page, matching the field d from page B. However,
e is reduced by a given margin so to form the somewhat
smaller picture field f which would contain the picture in a'.

Container handler 143 may also perform dominant type
selection. Under this method, container handler 143 may
assign each container (recursively) the dominant component
type of the components inside it, and may replace it by a
virtual component having the same type.

Container handler 143 may select this dominant type
according to (for example) the type of the largest compo-
nent, or according to majority voting based on total count/
area of components of each type. A threshold may apply,
therefore, for example only, if a text component covers over
60% of the container area the container may be declared as
a “text container”.

It will be appreciated that dominant type selection is
better performed in the semantic type space (which is
already somewhat “normalized”) than in the component type
space. Container handler 143 may also use the semantic tree
type mapping, so to go “up the tree” as much as required for
a unified container type to emerge.

Thus, referring back to FIG. 13, assuming the container a
is converted to a virtual picture component (as it contains 4
picture components and just one text component), the result-
ing signature may be: “1xText,4xPic”

Container handler 143 may typically assign an empty
container (or one that contains only components filtered out
during signature extraction) a default type (e.g. visual).

It will be appreciated that when container handler 143
performs the dominant type selection method on the com-
pared layout (handled component set) side, the matching

US 10,691,873 B2

23

process may require resizing. Reference is now made to
FIG. 14 which illustrates single component container expan-
sion and matching—layout A has container [a] which con-
tains a dominant picture component [b] (as well as non-
dominant text components [c,d,e]).

Container handler 143 may convert layout A to the
non-hierarchical layout B which has a single picture com-
ponent a'. Layout B is matched (as described in more detail
herein below) against a selected layout from layout database
70 originated layout C which has the single picture compo-
nent f matched to a'. It will be appreciated that a' and f' have
different sizes (and positions).

Container handler 143 may then map the original con-
tainer a (with its contained components b,c,d,e) into f to
create the container f. It will be appreciated that these
mappings required the resizing of all components contained
in a, and in particular b is resized to form the new picture
component g so to preserve the aspect ratio.

It will also be appreciated that not all components may be
re-sized at all (such as a Facebook “Like” button or an
iframe containing a non-resizable third party application).
Also, the width change of a text component may cause a
height change so that the aspect ratio cannot be maintained.
Matching using the dominant type selection method requires
that all components in the container be re-sizeable. Thus, if
a single component inside the container is not re-sizeable,
the method cannot be used.

Container handler 143 may also be implemented using
recursive implementation. This method can be viewed as the
opposite of container flattening. Under this method, con-
tainer handler 143 may index and handle container content
separately. Thus, container handler 143 may “stop” at con-
tainer boundaries and may only handle the elements directly
associated with the top level page. Container handler 143
may analyze the content of each container separately and
signature extractor 147 may generate a separate signature.
Container handler 143 may therefore regard a container as
yet another component type which can be indexed and
matched (including type abstraction between multiple con-
tainer types). Thus, instead of having a single hierarchical
signature (as in the method noted above), signature extractor
147 may generate a tree of signatures—one for the top page
and one for each container contained in it (directly or
indirectly).

It will be appreciated that in this manner, container
handler 143 may combine a page design from one layout
with container designs from other layouts. Reference is now
made to FIG. 15 which illustrates layout construction for the
recursive application method of container handling. For
page A which includes container b, system 100 may suggest
the layout C with the container d. This layout (C) was
constructed based on the layout E of which the structure of
internal container e is not a good match for b, replacing the
internal layout of e with the internal layout of the container
g which is part of a different layout F. It will be appreciated
that the main page design of F is not a good match for A, so
system 100 cannot suggest F by itself.

Container handler 143 may perform this mixing process
in a number of ways, such as by selecting automatically the
best option for each container in each suggested layout
(based on a scoring algorithm) or by selecting the top
options for each container in each suggested layout by using
a hierarchical user interface where the designer selects a
given suggested layout, and is prompted to select (recur-
sively) an appropriate layout for each of the containers in the
higher-level selected layout.

20

25

30

40

45

24

Container handler 143 may also locate the best combina-
tions by selecting the top suggested layouts for the main
page. For each container in each of the selected layouts
above, container handler 143 may select the top suggested
layouts for the container.

Container handler 143 may also create all possible com-
binations (each suggested page layout with each suggested
container layout). It will be appreciated that this number
may be large as a single page may have multiple containers
(with multiple suggested layouts for each container).

Container handler 143 may also rank all possible combi-
nations using the scoring function—ranking the page glob-
ally (including the specific container configuration and the
internal layouts). Alternatively, container handler 143 may
select the top z combinations and display them to the
designer for final selection. It will be appreciated that this
method is highly suitable for multi-page containers, in
which a container might have numerous possible internal
configurations (i.e. for each possible mini-page).

It will be further appreciated that container handler 143
may also combine the methods as described herein above i.e.
by using hierarchical signatures, container flattening, con-
tainer flattening and reconstruction, single component con-
tainer replacement; dominant type selection or by recursive
implementation.

In an alternative embodiment, container handler 143 may
use multiple methods simultaneously. For example, the
container handler 143 may use hierarchical signatures as
well as container flattening—creating multiple sets of sig-
natures for both layout database 70 and the handled com-
ponent set. It will be appreciated that layout searcher and
generator 60 may try to use both methods and suggest the
best results to the user by combining the results.

Container handler 143 may also mix methods. For
example, using container flattening (with or without recon-
struction) on the layout database 70 side (on server 15) and
dominant type selection on the handled component set
(client 5) side.

Container handler 143 may also combine flattening with
recursive implementation, so that some containers may be
flattened and some may be handled using a recursive imple-
mentation. Flattened containers may include (for example):
single component containers, containers with highly domi-
nant type, containers with a given attribute or type, contain-
ers with no semantic links or other relationship between
their contained components, containers that have sufficiently
simple content according to a predefined complexity metric.

In general, system 100 may match either a flat handled
component set signature to flat layout database signatures, or
a hierarchical handled component set signature to a hierar-
chical layout database signature.

It will be appreciated that the main factors to be consid-
ered by system 100 when selecting a single method may
include, the importance of the container structure to the
designer and how much the designer would like to preserve
the container structure (e.g. based on knowledge of the user,
the profile of the user, the pattern of system use etc.), the
level of recall (the use of a hierarchical signatures provides
for more exact matches, but lower recall, i.e. less retrieved
results) and the quality of the located layouts—as system
100 may use multiple methods and select the best results
located.

It will be appreciated that container handler 143 may also
adapt container flattening to a method whereby the layout
may be flattened and the specific atomic component may be
used to construct and automatically generated layout as
described in more detail herein below.

US 10,691,873 B2

25

It will be further appreciated that container handler 143
may adapt recursive implementation to handle containers as
yet another rectangular component to be arranged in lines,
along a curve, in columns etc. Container handler 143 may
also create additional automatically generated layouts (as
described in more detail herein below) by re-arranging
components inside the container.

Component splitter 144 may detect and implement com-
ponent splitting, e.g. based on the content of the relevant
component in order to provide better coverage (i.c. the
ability to find matching layouts). This may be done, for
example, when a text component contains a clearly sepa-
rated heading and body text—which are separated into two
text components. This may also be done when a text
component contains multiple and clearly separate text para-
graphs such as is illustrated in FIG. 16 to which reference is
now made. Such splitting may allow matching the layout [A]
containing the text component [a] with three distinct text
paragraphs ([al], [a2] and [a3]) into the layout [B] (as
described in more detail herein below). The picture [c]
would be matched into the picture [d], and the tree para-
graphs ([al], [a2] and [a3]) would be mapped into the three
separate text components [bl], [b2] and [b3].

Component splitter 144 may create a “should be near to
each other” (or a “do not place an interfering component in
the middle”) semantic relationship between the two created
components. Such a semantic relationship may be used
during the matching process (when creating possible match-
ing) or by layout filter and ranker 45 (to filter out less
desirable matches) as described in more detail herein
below).

Component filter 145 may filter out some components for
signature extraction (as described in more detail herein
below in relation to signature extractor 147). This may be
based on components which are too small (i.e. below a
certain area/size threshold), specific component types which
are always ignored (e.g. decoration components), specific
components marked to be ignored by the designer of the
page (e.g. locked components), specific components marked
to be ignored in the template(s) underlying the page or may
be based on semantic/content analysis of the component (as
further described in US Patent Publication No. 2015/
0074516), which may recognize (for example) pictures
which serve as background decoration only, or text field
containing ASCII graphics content (e.g. a separator line
created using “------ ”or “). In such cases, these compo-
nents are ignored by signature extractor 147 and during
matching and adaptation as discussed in more detail herein
below.

Component merger 146 may unite different components
for the purpose of layout processing and for signature
extraction by signature extractor 147 (as described in more
detail herein below) in a number of different ways in order
to provide better coverage for system 100. It may replace the
components (in a copy of the original layout) with a single
virtual component. Component merger 146 may also retain
the connection between the new virtual component and the
multiple components it replaced. Alternatively, semantic
link handler 141 may create a semantic link structure
involving all of the related components, and manage these in
parallel with the extracted signatures. It will be appreciated
that semantic linking and component merging are related but
not identical concepts. Semantic link handler 141 may
define two separate components which are related (but are
not merged for the handled component set). For example,
two components which had a dynamic layout anchor
between them, but are not adjacent to each other or other-

10

15

20

25

30

35

40

45

50

55

60

65

26

wise semantically related. Component merger 146 actually
replaces two (or more) components in the page by a single
component in the creation of the handled component set,
retaining a link to the original (separate) components.

Component merger 146 may provide multiple optional
methods to unite components, which are activated based on
user settings or on the specific parameters of the layouts
involved. These may include any of the methods detailed
below.

Component merger 146 may merge components which
are highly overlapping (e.g. above a given percentage of
their area) into a single component, using the smallest
enclosing rectangle as the new component size and position.
The component type is determined based on the dominant
component types, as described below for container type
determination.

Component merger 146 may merge adjacent components
which have identical or similar type. One example is image
stitching—component merger 146 may stitch image com-
ponents which are adjacent (horizontally or vertically) into
a single image component for the purpose of analysis. This
may depend on the size and distance of the components. It
may also depend on analysis of the content of the image
component (e.g. having similar colors, patterns or features at
the touching edge). Another case is text stitching—similar to
image stitching as noted above. This may be relevant only to
text component which are vertically (rather than horizon-
tally) adjacent, as there is no good way to merge the text
content of two side-by-side components.

Component merger 146 may employ semantic analysis to
detect related components, such as an image and its caption
field. Such components are left separate, but component
merger 146 may create a “should be near to each other”
semantic relationship between the two (alternative layouts
are still applicable in such cases, e.g. replace a layout of
“captions below images” with one of “captions above
images”).

An additional scenario is having a set of components
which together emulate a gallery. For example, a set of 9
image components arranged in a 3x3 form may not be
suitable for stitching, e.g. due to the distance between
adjacent images being too large. Instead, component merger
146 may convert the arrangement into a 3x3 image gallery
component.

Signature extractor 147 may extract a semantic signature
representing layouts generated on the incoming page and/or
layout (both handled component sets and stored layouts) and
may perform searching and comparisons using these signa-
tures. It will be appreciated that signature 147 may use
information retrieved by the other elements of page analyzer
44 as described herein above.

Signature extractor 147 may initially map components to
semantic types arranged in a semantic tree such as is
illustrated in FIG. 17 to which reference is now made. The
mapping is usually 1-to-1 mapping, i.e. there is a single
atomic semantic type in the tree for each component type.
However, in some cases multiple component types may map
to a single semantic type, e.g. multiple gallery component
types may map to a single Gallery semantic type. It will be
appreciated that in some implementations, slider galleries
(typically wider on the x-axis and shorter on the y-axis) may
map to a different SliderGallery semantic type notes used for
other 2-diemsional galleries.

Atomic semantic types are placed in the tree as descen-
dants of composite semantic type, as Image and Video are
descendants of Visual in the sample tree of FIG. 17. The tree
may include multiple levels of composite semantic types and

US 10,691,873 B2

27

atomic nodes may reside at different distances from the root
of the tree. The top level composite semantic type is the
generic semantic type component. It will be appreciated that
semantic types which are higher in the tree can be said to be
more abstract, or having a higher abstraction level.

It will be also appreciated that a regular semantic type
(which maps one or more website building system compo-
nent types) may also have sub-types. These sub-types map
specific sub-classes of the given website building system
component type(s), and thus provide a finer resolution than
the one provided by the website building system type
system. The sub-types are called semantic sub-types and are
represented as nodes in the semantic tree below the regular
semantic types. It will be appreciated that this is required as
in some scenarios a component type may need to be referred
to as two different types, since those two subtypes are
semantically different. For example, a page with two para-
graphs may get different layout suggestions than a page with
one paragraph and one title, although in both scenarios this
is a page with two text components.

For example, signature extractor 147 may map regular
text components into the text semantic type (there could be
multiple text component types). However, signature extrac-
tor 147 may also include two semantic sub-types, title and
paragraph, which map text components whose content was
identified as title or paragraph.

Signature extractor 147 may arrange the title and para-
graph as atomic sub-types of a composite Text semantic type
as show in the semantic tree section illustrated in FIG. 18 to
which reference is now made.

It will be appreciated that components may still be
mapped directly into the composite semantic type (text)
instead of the atomic semantic types (title, paragraph), e.g.
if signature extractor 147 cannot identify them as title of
paragraph text.

For example, a page contains 6 text components, of
which: 1 is identified as title; 3 are identified as paragraph
and 2 are identified as generic text (i.e. neither a title nor a
paragraph). In this scenario, the generated signature would
be “Title-1-Paragraph-3-Text-2” instead of “Text-6".

Signature extractor 147 may divide semantic types into
sub-types based on visual component properties, such as
general size categories (small vs. large), height/width ratios,
bright vs. dark components etc. For example, images may be
divided into narrow, tall or square categories. Such sub-
typing may be applied to specific semantic types only or
across all semantic types, e.g. signature extractor 147 may
define different sub-types for images based on aspect ratio
categories, but not for videos (which have specific possible
aspect ratios). Sub-typing may also be inferred from other
parameters and attributes, including non-visual attribute,
such as using the content of the component (e.g. using text
or image analysis, face recognition, image feature extraction
etc.) and using additional website building system informa-
tion, including procedural directives related to the compo-
nent, its use pattern or behavior. For example, all texts
components which are defined as “hidden and appear when
a button titled “help” is pressed” may be defined as a “help
text” semantic sub-type of the “text” type.

It will be appreciated that the use of highly detailed
semantic sub-types might yield non-optimal results, since
the suggested layouts may turn out to be too similar to the
handled component set, and the layout recall would also be
much lower.

The semantic tree may also include multi-component
semantic types (as described below), i.e. semantic types
representing a set of semantically linked components. The

20

25

30

35

40

45

55

28

set of semantically-linked components represented by a
multi-component semantic type is counted as a single com-
ponent, even though it contains two or more actual compo-
nents.

One scenario is the mapping of plug-in components, such
as third party applications. Signature extractor 147 may (for
example) map such components to multiple atomic semantic
types based on the general class of the third party application
(e.g. e-shop third party applications, blog third party appli-
cations etc.). These multiple third party application semantic
types may then be united under a generic third party appli-
cation composite semantic type.

Third party application semantic types may also have
additional, finer-grain information used for later selection of
matching third party applications, or for signature distance
calculation between pages containing third party applica-
tions. Such information may include, for example, specific
interfaces or data requirements of a specific third party
application. This can be used, for example, so to provide a
higher score for matching third party applications which use
the same interfaces as the current third party application, and
minimize the need for a third party application protocol
translation (such as discussed in US Patent Publication No
US-2014-0229821 entitled “Third Party Application Com-
munication API” published 14 Aug. 2014, incorporated
herein by reference and assigned to the common assignee of
the current invention). It will also be appreciated that third
party applications may occupy multiple windows or regions
in the applications created by the WBS, and still be handled
as a single semantic type (e.g. such as described in US Patent
Publication No US-2014-0229821).

For a given layout (from an indexed page or handled
component set), signature extractor 147 may generate a
signature which represents the count of components of each
semantic type in the layout. The signature can be represented
in multiple ways such as:

A string representation, e.g. “/3xText,4xVisual, 1xGal-
lery” or “Text-3-Visual-4-Gallery-1” and vector representa-
tion, e.g. [[3,Text],[4,Visual],[1,Gallery]].

It will be appreciated that multi-component semantic
types actually represent multiple semantically-linked com-
ponents as one component in the count. As signature extrac-
tor 147 arranges semantic types in a semantic tree, a given
layout may be referred to with different levels of abstractions
(i.e. using different-level semantic type), and signature
extractor 147 may generate multiple signatures for each
layout.

For example, for a layout with 1 text, 1 video, 1 image and
1 gallery, signature extractor 147 may generate the following
signatures (assuming the use of a GenericVisual composite
type):

1 Text, 1 Video, 1 Image, 1 Gallery.

1 Text, 2 Visuals, 1 Gallery.

1 Text, 3 GenericVisual.

4 components.

Signature extractor 147 may therefore generate multiple
signatures for both the handled component set and the
indexed pages, and the searching process (as discussed in
more detail herein below) may include some or all of these
signatures.

It will be appreciated that there may be multiple ways for
signature extractor 147 to derive more abstract signatures
from a given signature, as it could go up the semantic tree
in different orders. For example, referring to the example
semantic tree, and assuming the basic signature “1 Image, 1
Video, 1 Single line text, 1 multi line text”, two signature
sets could be generated. The first signature set may be:

US 10,691,873 B2

29

1 Image, 1 Video, 1 Single line text, 1 Multi line text.

2 Visual, 1 Single line text, 1 Multi line text.

2 Visual, 2 Text.

4 Components.

The second signature set would be:

1 Image, 1 Video, 1 Single line text, 1 Multi line text.

1 Image, 1 Video, 2 Text.

2 Visual, 2 Text.

4 Components.

In the first option signature extractor 147 starts by “unit-
ing” image and video together. In the second option, it starts
by “uniting” single line text and multi-line text together.

Alternatively, signature extractor 147 may use a stratified
semantic tree as illustrated in FIG. 19 to which reference is
now made, which shows a stratified version of the semantic
tree shown in FIG. 17. In a stratified system, all semantic
types “go up the tree” together. Thus, all level 1 (bottom of
tree) semantic type entries are united into their level 2
semantic types together, and then level 3 etc. A typical
signature set would be:

1 Image, 1 Video, 1 Single line text, 1 Multi line text.

2 Visual, 2 Text.

4 Components.

Signature extractor 147 may support a stratified semantic
tree which has multiple node levels inside a single strata, and
possibly even have leaf nodes inside the non-bottom strata.
Reference is now made to FIG. 20 which illustrates a
stratified semantic tree with paths of different length in the
same strata. It will be appreciated that the button type is in
the 2”7 strata and the text types have two node levels inside
the 27 strata, unlike the image and video types.

The image type has two semantic sub-types in level 1, and
the video (or others) do not. In this scenario, signature
extractor 147 may typically advance all components inside
the lowest strata until they reach the top of their strata, and
then “move them together” to the higher strata.

An example type uniting progression (and the list of
generated signatures) may include:

Stage Signature Comment
1 1 x Wide Image, 1 x image, Initial
1 x Video, 1 x Single Line, configuration
1 x Multi Line, 1 x Button
2 2 x Image, 1 x Video, 1 x Single Now all level
Line, 1 x Multi Line, 1 x Button 1
components
are at the
“top of level
17
3 3 x Visual, 2 x Text, 1 x Button Now all
components
have crossed
over to level
2
4 3 x Visual, 3 x Non-visual Now all
components
are at the
“top of level
P
5 6 x Component Now all
components

have crossed
over to level
3

As a general rule, going up the tree to a higher abstraction
level may lead to increased recall, at the expense of reduced
precision. The less abstract the signature is (lower in the
tree), the more precise the layout is, i.e. closer to the original
component collection.

20

25

35

40

45

50

55

60

65

30

It will be appreciated that for a page retrieved by spider
41, page analyzer 44 may generate a single full page layout,
multiple partial page layouts (created by removing the least
important components one by one) and multiple segmented
layouts together with their associated signatures for each
type of layout. The set of possible partial and segment
signatures are later used by layout searcher and generator 60
to try to find matching partial layouts and/or find matching
segment layouts (and to complete them).

It will be further appreciated that as well as layouts and
associated signatures, page analyzer 44 may also produce an
associated layout package for each layout (full page, partial
page or segmented). Each associated layout package may
contain: the full page data of the original page (including
component content), the handled component set—which
components in the page should be handled, the extracted
layout and the associated signature for the layout (which
could be multiple signatures, e.g. if calculating signatures
for multiple abstraction levels). Each associated layout
package may also contain information including indications
of component relevance status (background, decoration,
filtered out etc.) component split/merge information, page
type indication, container split/merge/modification informa-
tion and semantic link information—for use when matching
linked components in a handled component set (a query
page) and layout database 70 as discussed in more detail
herein below. The associated layout package may also
include a screen shot of the original page, so to present to the
user a “full view” of the suggested layouts, and not just an
abstract layout view. Layout database 70 may also store a
pre-processed version of the layout suitable for quick gen-
eration of a preview of the suggested layouts with the user
content.

It will also be appreciated that since layout packages are
often generated in groups (e.g. due to full page, partial page
and segment processing), multiple layout packages may
share blocks of information (e.g. the original page informa-
tion).

Layout database 75 may avoid storing some of the infor-
mation above, and instead recalculate it from the full page
(from the pertinent layout package) when needed.

Once page analyzer 44 has processed the incoming page
into suitable layouts and has extracted the associated signa-
tures, layout filter and ranker 45 may check the visual
quality of the layouts and/or pages in order to ensure that
only the layouts and/or pages which have the appropriate
quality and diversity are included.

Layout filter and ranker 45 may then index these selected
layouts and/or pages accordingly before storing them in
layout database 70 via layout database handler 75. It will be
appreciated that after the matching process (as described in
more detail herein below) layout filter and ranker 45 may
also receive matched candidate layouts to ensure that a
quality and diverse set of candidate alternative layouts are
eventually presented to the user as described in more detail
herein below.

Reference is now made to FIG. 21 which illustrates the
elements of layout filter and ranker 45. Layout filter and
ranker 45 may further comprise a visual page comparer 46,
a layout quality rater 47, a ranker 48 and a diversifier 49.
Page spider 41 may provide pages from which layouts may
be generated. It will be appreciated that the extracted layout
may be known as a server based layout (as opposed to an
automatically generated layout).

Visual page comparer 46 may determine the level of
visual similarity of two layouts or of two pages (e.g. between
a new incoming layout and a layout already stored in layout

US 10,691,873 B2

31

database 70). It will be appreciated that it is not used to
retrieve pages when collecting pages and layouts for index-
ing, but instead is used to filter out pages and/or layouts
which are very visually similar to other pages and/or layouts
in layout database 70 having the same signature—so to
better support results diversification.

Visual page comparer 46 may compare the general com-
ponent distribution in the two pages, e.g. using detailed
text/image/overall metrics. It may divide the page into
regions (e.g. using a grid), check which components inter-
sect which region (possibly classifying by color, type etc.)
and compare the scores for the various regions.

Visual page comparer 46 may also compare by attempted
component matching between the pages, e.g. by attempting
to match the components and checking how good the
resulting match is. This could be done, for example, by
matching components in the two pages by position, size and
visual similarity (e.g. based shape and color).

Visual page comparer 46 may match the two pages (for
example) by creating the set of all possible matching (pos-
sibly filtering totally irrelevant matches), scoring them and
finding the match with the best score, by using a greedy
algorithm to always add the best next pair or by handling the
problem as an assignment problem and solving it using
known algorithms such as the Hungarian algorithm.

Visual page comparer 46 may also use snapshot similarity
at the page image level, by using a known image similarity
algorithm on a virtual snapshot of the two pages.

Layout quality rater 47 may provide a quality score (as
discussed in more detail herein below) which may be used
when indexing to filter out low-quality pages or when
retrieving to rank the pages displayed to the user.

The score may be typically stored with the indexed layout
in layout database 70. However, layout quality rater 47 may
recalculate the score upon use as the calculation may be
based on an expert system that is continuously modified, or
may use the post-adaptation version of a suggested layout
(i.e. the version created by adapting the handled component
set to the specific suggested layout), or may depend on
quality criteria specific to the given user.

Layout quality rater 47 may apply this algorithm to full
pages and partial pages as well as templates for full pages
and page parts. Layout quality rater 47 may take into
account components and visual elements which are filtered
out by component filter 145 (such as decorations which are
not regular components).

Layout quality rater 47 may use a number of methods or
a combination thereof to determine the rating such as
methods which are based on a static analysis of the content
of the page, methods which rely on training a learning
system (or systems) based on actual selections made by
users or methods which are based on information related to
the designer of the page.

Layout quality rater 47 may support multiple types of
quality scores and metrics. For example, the article by
Xianjun Sam Zheng, Ishani Chakraborty, James Jeng-Weei
Lin, and Robert Rauschenberger “Correlating low-level
image statistics with users-rapid aesthetic and affective
judgments of web pages”, International Conference on
Human factors in Computing Systems (SIGCHI), April,
2009. http://research.rutgers.edu/~ishanic/papers/sigchi.pdf,
has end-users perceive multiple quality metrics (e.g. profes-
sional-looking, captivating, and appealing) as different and
independent metrics.

It will be appreciated that there are a number of known
algorithms in the art for such ranking though they are

10

15

20

25

30

35

40

45

50

55

60

65

32

typically applied to regular web pages and not to component
collections. An algorithm may be based on any combination
of the following:

Page statistical metrics. These view and analyze the page
as a collection of components, and extract metrics such as #
of text components, # of fonts used, # and types of links etc.
Layout quality rater 47 may use the statistical profile of
pages known to be well-designed (e.g. created by a profes-
sional studio inside the WBS vendor), and compare the
statistical profile of the page to that of well-designed pages.

Page visual attributes (as discussed herein above in rela-
tion to the article by Zheng et al.). Layout quality rater 47
may analyze the page as an image, collecting metrics such
as symmetry, balance, number of quadrants in decomposi-
tion, color uniformity etc. The metrics should be combined
by pre-determined weights to derive a total page quality
score.

Layout quality rater 47 may also use a content-based
algorithm in which the parameters are set by a learning
system (such as a neural network) trained with actual user
inputs—herein referred to as a layout quality rater learning
system. Layout quality rater 47 may use a number of actual
user inputs so to train the layout quality rater learning system
such as which layouts were actually selected by users and
applied to a page, which layouts were tested by a user,
applied to a page and later discarded or replaced and a
specific feedback requested from the user (e.g. “rate the best
3 of the displayed layouts.”).

Layout quality rater 47 may also use actual page viewing/
rating information to train the layout quality rater learning
system. However, such rating may be unreliable—as it may
be greatly affected, for example, by advertising campaigns
which affects site traffic (but is not related to the design
quality of the site).

Layout quality rater 47 may employ a system-wide set of
weights—i.e. using a single layout quality rater learning
system which provides a system-wide layout quality rate
value (used by all designers and stored together with the
stored layouts). Alternatively, it may use a personalized
layout quality rater learning system which may have weights
personalized to the specific user (or user set). In the latter
case, the personalized layout quality rater learning system
may be initialized by values from a system-wide layout
quality rater learning system. Then the personalized layout
quality rater learning system would be further trained by the
specific user (or user set). The layout quality rater learning
system would gradually come to reflect the personal taste of
the specific user (or user set).

In the scenario in which a personalized layout quality
rater learning system is employed, layout quality rater 47
may use separate layout quality rater learning system acti-
vation to grade the results since it cannot use the stored
layout quality rated values which may be system-wide
(rather than personalized).

Layout quality rater 47 may also rank pages according to
information about the designer of the pages. This could a
generic designer ranking, or a specific rating, such as a
designers rating specific to the given industry or sector to
which the user belongs.

Ranker 48 may rank according to the semantic similarity
to the handled component set signature, the layout quality
rating value produced by layout quality rater 47 and param-
eters external to the layout, such as layout designer identity
(e.g. the page designer has provided a list of designer whose
style he prefers) and commercial parameters such as pro-
moted search priority increase (if implemented).

US 10,691,873 B2

33

Ranker 48 may disqualify some of the solutions based on
semantic similarity. Low semantic similarity results should
have been filtered out at the retrieval stage, but the resulting
layouts may still have a range of semantic similarity values.
It may also disqualify solutions with low layout quality rate
values, which may have passed the filtering process at the
layout database 70 creation stage.

It will be appreciated that if a personalized layout quality
rate value system has been implemented, layout quality rater
47 may calculate the specific personalized layout quality rate
values for all matches based on the parameters specific to the
user who performed the query.

Ranker 48 may disqualify some of the solutions based on
component size matching. Ranker 48 may perform prelimi-
nary matching of components (based on semantic types)
between each resulting pages and the handled component set
as described in more detail below in relation to layout
adapter and applier 50. It will be appreciated that in some
cases, there may be a semantic match between the types of
components but a substantial mismatch in the sizes of the
components.

An example would be a scenario, in which both the
handled component set and a located page P have 5 text
components, but the text components of the handled com-
ponent set are large and all the text components of page P are
all very small. In such a scenario, it is best to disqualify page
P.

Ranker 48 may provide a preliminary ranking by sorting
the resulting layouts according to any combination of the
metrics above (e.g. a weighted average).

As discussed herein above, system 100 aims at providing
a diverse set of high quality layouts. When operating within
layout searcher and generator 60, diversifier 49 may ensure
that there is enough diversity between the retrieved or
generated layouts for a particular page and that the layouts
are as visually different as possible. When processing lay-
outs generated from page spider 41 retrieved web-pages,
diversifier 49 may ensure that there is enough diversity
among the potential layouts to be added to layout database
70—both among the potential layouts and themselves, and
between the potential layouts and these already existing in
layout database 70.

Once the criteria above are used to create the preliminary
ranking, diversifier 49 may create a final (displayed) result
ranking using a diversification process. The diversification
process may be based on the visual distance calculated by
visual page comparer 46 as described herein above, and the
selection of results which are not visually similar. Diversifier
49 aims to present suggested layouts which are visually
different from the handled component set and from each
other.

Diversifier 49 may do this using a greedy algorithm. A
typical greedy algorithm works as follows:

Define the following page/layout metrics:

SLS(L1,L.2)—semantic layout similarity between layouts
L1 and L2.

LQR(L)—layout quality rating of a layout L, (which may
be user-specific).

VPS(L1,L.2)—visual page similarity between layouts L1
and L2 (using visual page comparer 46).

Let S be the matching layouts found by the semantic
query, e.g. the top n pages P having the maximal SLS(HCS,
pP);

Define an initially empty result R;

Select a page P from S having highest value of a metric
using a combination of SLS(HCS,P) and LQR(P);

Add the found page P to R and remove it from S;

20

25

30

40

45

55

60

34

Repeat the following until R is sufficiently large:

Select a page P from S which has the highest value of a
metric that is a combination of:

SLS(HCS,P), i.e. semantically close to the HCS;

LQR(P), i.e. having high quality;

—[> VPS(PP, P)],
PPeR

i.e. having maximal total amount of visual distance between
P and the existing members of the result set.

Add P to R and remove it from S;

It will be appreciated that numerous variations to the basic
greedy algorithm exist (for example the article by Vieira,
Razente, Barioni, Hadjieleftheriou, Srivastava, Traina,
Tsotras—2011 “On query result diversification™ http://ww-
w.csd.uoc.gr/~hy562/papers/diversification/vieiral 1.pdf)
such as:

Creating initial clustering of the pages in S according to
visual similarity, and selecting one example from each
cluster.

Checking visual distance of selected page P from both
current result pages as well as pages in S (so to select pages
which provide diversity for upcoming selections as well).

Using randomized selection among k best alternatives at
each round.

Once the final ranked result set R is created, ranker 48
may display it to the designer so the designer may select
which layout to apply to the handled component set as
described in more detail herein below.

Once ranker 48 and diversifier 49 have ranked the layouts
and ensured that they are diverse, layout filter and ranker 45
may send them to layout database coordinator 75 which may
store them in layout database 70 accordingly indexed.

As discussed herein above, layout searcher and generator
60 may search layout database 70 to find suitable semanti-
cally similar layouts to offer to a user as an alternative to his
requested page, and also generate automatically generated
layouts (as described in more detail herein below) which
correspond to the handled component set of his page. It will
be appreciated that not only may a user transfer all his
content to a new layout, he may also make edits during the
process, e.g. invoke the system to display a set of layout
alternatives (in a pop-up dialog for example), and then
continue to edit the page while the pop up dialog is open and
refreshes to display changing alternative layouts.

Reference is now made to FIG. 22 which illustrates the
elements of layout searcher and generator 60. Layout
searcher and generator 60 may further comprise an auto-
matically generated layout (AGL) handler 62, a server based
layout (SBL) handler 64 and a matcher 66. The functioning
of these elements is discussed in more detail herein below.

Layout searcher and generator 60 may receive a request
input page via page editor 30 and page analyzer 44, for
which a user would like to see alternative layouts. As
discussed herein above, page editor 30 may be a suitable
graphical user interface between the user and system 100
and may also allow users to make editorial changes to their
page (both content and format). Page editor 30 may allow
the user to mark either all the components in the page for
which he wants an alternative layout or just a subset. The
incoming request page and associated handled component
set may be analyzed by page analyzer 44 (as described
herein above) which may break up the full incoming handled
component set into partial and segmented handled compo-

US 10,691,873 B2

35

nent sets and may generate associated signatures and layout
packages as described in more detail herein below to extract
3 different sets of potential handled component sets from the
user requested page—full, partial and segmented.

The output of page analyzer 44 (handled component sets,
signatures, layout package etc.) may then be passed to both
AGL handler 62 and SBL handler 64 to create/retrieve
appropriate candidate layouts. Matcher 66 may check can-
didate layouts from SBL handler 64 and AGL handler 62
against the handled component set of the incoming page and
may find a subset of matching components between the two
layouts (as discussed in more detail herein below). Layout
filter and ranker 45 may filter and rank the retrieved candi-
date layouts as described herein above and may forward
them to layout adapter and applier 50 to be adapted accord-
ingly as described in more detail herein below. It will be
appreciated that matcher 66 may require a precise match
between a pair of layouts rather than a match of a subset of
the components.

It will be appreciated, that in addition to layouts created
and prepared for use, and those generated from existing
websites by page analyzer 44, AGL handler 62 may create
automatically generated layouts based on the components
included in the handled component set of the incoming page.

These automatically generated layouts may be used as a
fallback (if no suitable, high-quality layout was found by
searching as described in more detail herein below), or may
be created by default (so to produce one or more additional
layouts to be ranked and displayed to the user).

Reference is now made to FIG. 23 which illustrates the
elements of AGL handler 62. AGL handler 62 may further
comprise an AGL coordinator 261, a column layout genera-
tor 262, a main and side bar layout generator 263 and a rule
based generator 264.

AGL coordinator 261 may receive the incoming handled
component set from either page editor 30 or from SBL
handler 64 (as described in more detail herein below), and
create multiple possible algorithmically-generated layouts
which use these components, possibly taking into account
various constraints and considerations as detailed below.
Column layout generator 262 may divide the page into
columns and order the components in one column after the
other. Main and side bar layout generator 263 may place
components in a larger main column and after that in a
smaller side-bar and rule based layout generator 264 may
place components one after the other according to pre-
defined placement rules which may include specific layout
guidelines for specific component types. AGL handler 62
may also combine the various layout generator methods, e.g.
by using one method for the main generated layout and a
different method for container layout generation.

AGL handler 62 may be applied to single components or
to components grouped according to semantic relationship
(as further discussed US Patent Publication No. 2015/
0074516).

AGL handler 62 may also take into account existing
explicit dynamic layout anchors (as per US Patent Publica-
tion No 2013-0219263) and group elements anchored
together as a single meta-component to be placed as one
entity in the automatically generated layout order. It may
also take into account the existing component order (e.g.
using the component order extraction algorithms described
in US Patent Publication No. 2015/0074516), so the created
automatically generated layouts are more related to the
original layout. Note that this is different from the signature

10

15

20

25

30

35

40

45

50

55

60

65

36

extraction performed for layout database 70 searching,
where the current page layout is irrelevant (except for the
arrangement of containers).

It will be appreciated that no signature extraction is
required for an automatically generated layout, since they
are based on the actual component set of the handled
component set, and are thus expected to have a “perfect
score” as far as component matching is concerned. However,
they might fail in terms of diversity (i.e. they are too similar
to another suggested layout) or quality (i.e. they are not as
visually appealing as other suggested layouts). The output of
AGL handler 62 may be sent to matcher 66 or returned to
SBL handler 64 as described in more detail herein below.

Reference is now made to FIG. 24 which illustrates the
elements of SBL handler 64. SBL handler 64 may comprise
a server based layout coordinator (SBL) handler 161, a
partial layout handler 162 and a segment layout handler 163.

As discussed herein above, page analyzer 44 (and the
signature extractor 147 in particular) may produce an array
of signatures. These can be divided into 3 signature
classes—full page, partial page and segment.

Full page signatures may be used to find layouts in layout
database 70 having a set of components which match the
entire page (or handled component set).

Partial page signatures may be used to find the closest
matching layout for a subset of the components, and to add
the missing ones. In order to avoid combinatorial complex-
ity (i.e. having to create signatures for all possible compo-
nent sub-groups), signature extractor 147 may remove just
the “least important component” (according to an impor-
tance rank) one at a time, and may create a signature after
each single component removal. For example, a Facebook
like component is less important than a primary image
component.

Signature extractor 147 may also create the effect of
adding components (to create “larger” signatures for search-
ing). This can be done by removing components (in a similar
way—according to importance) in the collection stage, and
creating a set of possible signatures for each indexed layout.
This way, gathered layouts may be indexed by layout
collector and updater 40 under multiple signatures according
to their full and partial layouts, and matcher 66 may match
a handled component set against a part of a gathered layout
(as discussed in more detail herein below).

Segment page signatures may be used to divide the
handled component set into segments, in order to find a
match for each segment and combine the resulting matches.

SBL coordinator 161 may receive the incoming page
request from page analyzer 44 together with the handled
component set and the list of signatures for the three
different categories (full page, partial page and segment).
SBL coordinator 161 may then query layout database 70
using the signature list via layout database coordinator 75.

As discussed herein above, layout database coordinator
75 may comprise a signature comparer 77. Signature com-
parer 77 may compare the extracted signatures from the
handled component set of the incoming page request with
the stored indexed signatures in layout database 70. Signa-
ture comparer 77 may support exact searching only. Exact
searching simply searches for layout having the same sig-
nature—which might provide excellent precision but very
low recall. Approximate searching, on the other hand,
requires finding layouts whose signatures are close to that of
the handled component set.

It will be further appreciated that signature comparer 77
may only perform semantic abstraction i.e. may attempt to
compare signatures in a number of different ways by per-

US 10,691,873 B2

37

forming semantic abstraction on both signatures being com-
pared. For example, when comparing a “heading text”
signature to a “paragraph text” signature, it may abstract
both signatures into “text component” resulting in a match.
It will be appreciated that signature comparer 77 may
perform abstraction at the compare time or by indexing each
signature with its multiple abstraction alternatives in
advance and then may search according to these alternatives.
Thus, each stored layout is indexed under multiple signa-
tures (at various levels of abstraction). It will be further
appreciated that signature comparer 77 does not handle extra
or missing components.

It will be appreciated that signature similarity may be
defined based on a distance metric—how different are two
signatures. Signature comparer 77 may employ a number of
possible metrics, possibly based on a weighted semantic
tree.

It will be appreciated that some of the metrics may
employ a weighted semantic tree which includes a weight
for each tree arc, as illustrated in FIG. 25 to which reference
is now made. The arc weight (a positive number) for each
arc states the distance from the original designer intent by
going up or down the arc.

In the example illustrated in FIG. 25 to which reference
is now made, a (Single line=>Text) arc has a weight of 5
whereas a (Multi line=>Text) arc has a weight of 2. These
values may be selected for use by signature comparer 77
since a multi-line text component more closely resembles
the traditional notion of a text component than a single-line
text component.

Such arc weights may be determined in multiple ways.
For example, they may be determined by the system design-
ers, may be inferred from responses from page designers
using the system, may be inferred from system usage
information or may be derived using a learning system based
on user behavior and responses.

One possible metric may be based on the difference in the
amount of each semantic type. If signature is considered a
vector with a positive integer value (>=0) for each semantic
type (whose value is the amount of components of the given
type), signature comparer 77 may define a set S of all
semantic types (including both atomic and composite types),
the difference d between signatures A[| and BJ] is:

d= Al - Bl

tes

In the calculation above, amounts for composite types are
only for components directly assigned to the specific com-
posite type (by mapping from component type), i.e. not
components mapped into sub-types which were later
abstracted into the composite type.

Another possible metric is the sum of weights for all arcs
that have to be traversed to make the signatures identical
(multiplying each weight by the number of components of
the given semantic types that have to go through these arcs).
This assumes that the tree is traversed both up and down. An
example of this is the use of the tree in FIG. 25 to which
reference is now made, in order to calculate the distance
between:

A=[Image 5 Video 6]

And

B=[Image 3 Video 8]

To go (for example) from A to B, the following arcs may
be traversed:

10

15

20

25

30

40

45

50

55

60

65

38

2x(Images=>Visual)=2*3;

2x(Visual=>Video)=2*5;

For a total cost of 16 (2*342%5).

The tree should be extended to contain “extra component™
node attached to the top level “component” node so to
support additional or missing nodes as shown in FIG. 26 to
which reference is now made.

It will be appreciated that as the semantic tree has a single
path from each type to each type, the tree traversal “direc-
tion” does not affect the result.

Signature comparer 77 may make the two metrics above
area-sensitive by trying to match components (having the
same semantic type) according to their areas, and applying
the area of “left over” components as a multiplier to the cost
of “left over” components for each A and B. Thus, only
components having similar area are equivalent, and compo-
nents whose area is too small or too large are regarded as
“extra”.

Typically, the best quality layouts that may be stored in
layout database 70 are manually created layouts, followed
by the layouts based on website building system internal
designer web sites, followed by that of the external designers
(at differing levels). It will be appreciated that layout data-
base 70 may also store automatically generated layouts
(based on the components in the handled component set) at
differing levels of quality—as some component combina-
tions lend themselves to the creation of better automatically
generated layouts than others. This may be required if
system 100 includes a sophisticated system for automati-
cally generated layouts including (for example) an elaborate
aesthetic rule system. It will be appreciated that in such a
system, the creation of automatically generated layouts may
be resource intensive—since generated layouts differ based
on the order of the components, the amount of automatically
generated layouts is exponential to the number of compo-
nents. Therefore, it may be desirable to pre-generate auto-
matically generated layouts for multiple possible signatures
and to store them in layout database 70. In such a system
layout database searching by SBL handler 64 may find these
layouts and SBL handler 64 may include them in the search
results together with actual layouts that have been generated
from designed pages by page analyzer 44 as described
herein above.

Thus, in an alternative embodiment, AGL handler 62 may
be invoked by SBL handler 64 after SBL. handler 64 has
finished retrieving candidate layouts only.

In another embodiment, system 100 may have a well-
defined criterion which states for which signatures automati-
cally generated layouts were pre-generated. Thus, AGL
handler 62 may be invoked only if the required signatures do
not comply with the criterion.

In yet another embodiment, system 100 may omit AGL
handler altogether.

To combine the searching in these multiple layout data-
bases 70, signature comparer 77 may use either a combined
search—i.e. may search all of the layout databases 70 and
may combine the results (taking diversity and quality into
account when ranking the results) or may perform a sequen-
tial search—search the layout databases 70 according to a
pre-specified order. It may search the next layout databases
70 if the results from the previous layout databases 70 are
not sufficient (in terms of number of results, their quality or
their diversity).

It will be appreciated that there are multiple ways in
which the signature comparer 77 can perform the search so
to locate suitable candidate layouts. It may search for
identical signatures, search for similar signatures through

US 10,691,873 B2

39

semantic abstraction and search for similar signatures, and
correcting by adding/removing components.

Signature comparer 77 may perform identical signature
searching via direct indexing of the signature using string
representation indexing, hashing etc.

Signature comparer 77 may apply the same process to the
handled component set-based signature. Thus, the searching
is performed according to multiple signature versions, and
the results are united. Signature comparer 77 may also filter
results according to their semantic distance using the sig-
nature comparison methods outlined above.

Signature comparer 77 may perform similar signature
searching for each signature in many ways, such as the use
of map signature vector representation into vector space and
using Fuclidean distance as the first approximation. This
may be assisted by embedding algorithms which reduce the
number of dimensions in the vector space (e.g. such as the
article by Hjaltason G., Samet H.—2000 “Contractive
Embedding Methods for Similarity Searching in Metric
Spaces.” http://'www.cs.umd.edu/~hjs/pubs/metricpruning-
.pdf)

Signature comparer 77 may perform searching using (for
example) any of the known nearest point searching methods
in the vector space using MinHash, SimHash, using attribute
relational graphs and by using similar signature searching
with added/removed components as described herein above.

Signature comparer 77 may repeat the process until a
reasonable number of matches are found (breaking or pos-
sibly accumulating matching layouts found) or a given
number of searches.

If a resulting layout contains extraneous components,
matcher 66 may remove these extraneous components in the
component matching process (as described in more detail
herein below). If a resulting layout has less components than
the handled component set, the additional handled compo-
nent set components may be added when applied (e.g. inside
or below the layout as noted below).

Layout database coordinator 75 may return matching
layouts which provide alternatives to each of the sent
signatures in each of the 3 signature classes: full page,
partial and segment.

SBL coordinator 161 may then send the partial layouts
(only) to partial layout handler 162 to be “completed”.
Partial layout handler 162 may send the sets of missing
components (i.e., [handled component set] minus the spe-
cific [partial layout]) to AGL handler 62 for completion.

Reference is now made to FIG. 27 which illustrates the
creation of partial layouts. Layout A (which includes the
handled component set) consists of 3 main sections: the first
section a includes 2 picture component and 4 text compo-
nent substantial to the page; the second section b which a
Facebook Like button x, a picture component, a Share
button y and a small notification text component z; The third
section ¢ contains 5 picture components which are again
important to the page.

Page analyzer 44 may determine that the least important
components in the page are 3 of the 4 components in section
b which are (in ascending order of importance) the like
button x (least important), the share button y and the
notification text z. All other components are considered
more important than these 3 components.

Page analyzer 44 may thus create 3 partial layouts. The
first layout B may include all components in A except for the
like button x. The second layout C may include all compo-
nents in layout A except for the like button x and the share

10

15

20

25

30

35

40

45

50

55

60

65

40

button y. The third layout D may include all components in
A except for the like button x, the share button y and the
notification text z.

Page analyzer 44 may send the three partial layouts B, C
and D, together with the removed components (x for B, x/y
for C, x/y/z for DE), the matching signatures and layout
packages (for each of the three) to layout searcher and
generator 60, where they are routed to SBL handler 64 and
to partial layout handler 162. Partial layout handler 162 may
locate alternative layouts for each of B, C and D. Partial
layout handler 162 may further request AGL handler 62 to
create automatic layouts for each of the removed component
sets (e.g. 3 automatic layouts for x, x/y and x/y/z). Partial
layout handler 162 may then append the corresponding
automatic layout to each of the located alternate layouts for
B, C and D to create 3 combined layouts which are the ones
combined with the content of the original layout A and
returned by the partial layout handler 162.

It will be appreciated that the selected least important
components may be anywhere on the page and in particular
may be intermixed between other components (more impor-
tant or not). In the final combined layout, these least impor-
tant (and removed) components may typically be re-added at
the bottom of the suggested layout.

Reference is now made to FIG. 28 which illustrates a
simplified version of the working of the segment layout
mechanism. Layout A (which includes the handled compo-
nent set) contains in this example 2 text and 2 picture
components in its top part Al, and 2 text, 1 picture and 1
table components in its bottom part A2.

Page analyzer 44 may have previously recognized that
layout A may be easily divided by a horizontal end-to-end
separator X into the two segment layouts B (containing the
components in Al) and C (containing the components in A1)

Page analyzer 44 may have further recognized (using the
semantic link handler 141) that the 2 picture components
and 2 text components in Al are 2 picture-caption pairs, and
thus it may not further sub-divide Al into two sub-parts.
Similarly, page analyzer 44 may have determined that the 2
text components of A2 are related (for example, due to a
manual dynamic link anchor connecting them) and do not
sub-divide A2.

Page analyzer 44 may send the two segment layouts B and
C, together with their matching signatures and layout pack-
ages (for each of C and D) to layout searcher and generator
60, in which they are routed to SBL handler 64 and to
segment layout handler 163. Segment layout handler 163
may send the signatures for B and C to layout coordinator 75
which may locate matching suggested layouts D and E
(respectively).

Segment layout handler 163 may further perform the
matching between B and D and may create a combined and
adapted layout F—which uses the layout format from the
located layout D and the component content from segment
layout B. Similarly, Segment layout handler 163 may per-
form matching between layouts C and E to create a com-
bined and adapted layout G.

Segment layout handler 163 may then combine layouts F
and G (by appending G to the bottom of F) and may create
the merged layout H, in which the upper part H1 is taken
from F and the lower part H2 is taken from G.

It will be appreciated that in the actual implementation,
the search for suggested layouts (D and E above) may return
multiple options for each (e.g. D1 ... Dnand E1 ... Em),
which may be combined in nxm ways. Segment layout

US 10,691,873 B2

41

handler 163 may create all nxm combinations, or may filter
them according to predefined rules criteria as discussed
herein above.

AGL handler 62 may send back (for each partial layout)
a matching automatically generated layout created from the
components missing in the specific partial layout. Partial
layout handler 162 may combine the partial layout(s) with
their matching “missing component layout” from AGL
handler 62 and create a new completed layout and return it
to SBL coordinator 161. Partial layout handler 162 may add
(for example) the automatically generated “missing compo-
nent layout” below the partial layout thus combining them.

In an alternative embodiment, partial layout handler 162
may send the actual partial layout to AGL handler 62 and
have the AGL handler 62 use it as a “seed” and add the
missing components to it directly.

SBL coordinator 161 may send the set of located segment
layouts to segment layout handler 163. Segment layout
handler 163 may combine the per-segment alternatives to
create combined full page layouts. In the typical case in
which the segments were created by horizontal end-to-end
splitting of the handled component set into segments, seg-
ment layout handler 163 may combine the per-segment
alternatives by putting the per-segment alternatives one
below the other according to the original splitting order. In
the more complex cases, the segment layout handler 163
may replace the area occupied by each original segment with
the per-segment alternatives.

Segment layout handler 163 may create numerous com-
bined layouts by combining all possible suggested per-
layout alternatives in all possible combinations and return
them to the SBL coordinator 161. The segment layout
handler 163 may also filter the combined layouts according
to specific rules before returning them to the SBL coordi-
nator 161. Such rules may define which layout combinations
have better quality, similarly to the rule types described
herein above for layout quality rater 47.

In an alternative embodiment, SBL. handler 162 may
directly search for a combination of layouts with together
match the signature of the handled component set. It will be
appreciated that this may be computationally expensive,
since it requires searching in the space of layout pairs.

One solution is for SBL handler 162 to perform a linear
scan of layouts having a smaller number of components than
the handled component set, “subtract” each result from the
handled component set (using vector subtraction), and
search for possible matching layouts to the remaining com-
ponents. If a sufficiently small number of components
remain, they can be added below the suggested layout (to
allow manual rearrangement)—possibly subject to arrange-
ment using an auto generated layout.

SBL coordinator 161 may then merge the returned layouts
for the 3 signature classes (page, completed partial, com-
bined segments) and send them to matcher 66.

Matcher 66 may attempt to find a match between the
handled component set of the incoming request page and
every layout that may have been retrieved by SBL handler
64. Matcher 66 may construct a set of matched components
(from both layouts) which is a subset of both, or alterna-
tively may only allow exact match to be created.

It will be appreciated that each layout sent to matcher 66
may be considered a candidate layout since unless a suitable
match is not found between the handled component set of
the incoming request page and a candidate layout—and in
this case, the layout is rejected before it is presented to the
user as a valid alternative layout for his page. As discussed
herein above, layouts created by AGL hander 62 should

10

15

20

25

30

35

40

45

50

55

60

65

42

provide a successful match as they are created based on the
specific component list provided to AGL handler 62 (and
preserving their website building system component ID—
thus allowing the use of exact ID-base matching). This is to
ensure that for all candidate layouts found, an accurate
match may be made and therefore only relevant layouts may
be presented to the user. It will be appreciated that the page
level objects (from the incoming request page and the
associated page of the selected candidate layout page) may
include additional non-component information such as
underlying template pointers, decorations, background
design information etc.

It will be further appreciated that the layout level objects
(handled component set of the current requested incoming
page and candidate layout) may usually be a subset of their
corresponding page level objects (i.e. [RL]C[RP],[CL]C
[CP]) (RL=requested layout=handled component set,
RP=requested incoming page, ClL=candidate layout,
CP=candidate page) as the page level objects may contain
components which are not part of the current layout (e.g.,
decorations, components marked with “do not search
according to this”, omitted component, locked components
etc.). It will be appreciated that the candidate page infor-
mation may be retrieved from the associated layout package
stored in layout database 70 as well as other useful infor-
mation such as semantic types, links and dynamic layout
links as discussed herein above. However, this is not always
the case since component merger 144 and component split-
ter 146 may cause the layout level to contain such united/
split components which are not included in the page level
object.

It will be appreciated that the handled component set may
be further “reduced” as the user may request searching based
on a selected subset of the components in requested incom-
ing page (instead of the entire current page).

It will also be appreciated that signature comparer 77 may
perform at the layout level, i.e. the actual signature-based
matching is between signatures extracted from the handled
component set and the candidate layout.

It will be further appreciated that matcher 66 may create
a matched component subset of the handled component set
and the matched subset of the candidate layout. The matched
component subset of the requested incoming page and the
matched subset of the candidate layout may not always be of
the same size. Matcher 66 may, for example, match an image
component and a text component (in the incoming page)
together with a single (image+caption) component in a
candidate layout.

It will be appreciated that if a candidate layout is an
automatically generated layout, the situation may differ
since the automatically generated layout (candidate layout)
is created directly from the components in the handled
component set. Thus, there is no separate containing page
associated with the candidate layout and the matching
between the handled component set and the candidate layout
is always exact and performed based on having identical
component IDs (as discussed in more detail herein below).
Since the layouts are identical, the matched components
subsets are also identical.

As discussed herein above, matcher 66 may match some
or all of the components in the handled component set and
the candidate layout according to system defined component
ID’s.

It will be appreciated that for automatically generated
layouts, ID-based matching always works, since the com-

US 10,691,873 B2

43

ponents included in the automatically generated layout are
the same components that are included in the handled
component set.

In the specific scenario in which the incoming request
page and the candidate page are both pages derived from a
common template (or have another inheritance-related rela-
tionship), matcher 66 may also perform ID-based matching.

It will be appreciated that in other scenarios (e.g. regular
layouts from layout database 70), ID-based matching is not
suitable and matcher 66 may use attribute-based component
matching instead.

Matcher 66 may perform attribute-based component
matching by dividing the components (in the handled com-
ponent set and the candidate layout) into classes according
to their semantic types.

Matcher 66 may typically use very abstract semantic
types (i.e. high on the semantic tree) as classes, so to provide
wider matching. For example, a classification may use 4
classes based on major semantic types such as text, image,
galleries and “other components”.

Once matcher 66 has classified the components accord-
ingly, it may sort the components in each class according to
their size or possibly—in particular for text—their amount
of content. The latter is done so a large text area containing
small amount of text may be matched with a smaller text
area which might be more suitable. Matcher 66 may further
sort components having identical (or near-identical) areas
according to additional attributes such as aspect ratio, posi-
tion on screen etc.

It will be appreciated that such matching may omit
components with extreme sizes (too large or too small)
which cannot be matched with similar size components in
the matched layout. Matcher 66 may also omit cases when
the given layouts have conflicting size such as a Facebook
like button component that has a fixed size and a contact
form that has a minimum width.

Once matcher 66 has sorted the components in each class,
it may use a matching algorithm to create the pairing as
described herein above such as a greedy algorithm, the
Hungarian algorithm or anything similar. It will be appre-
ciated that components in each category are separately
matched.

Matcher 66 may also use semantic link information
created for the handled component set (during processing by
page analyzer 44) and information retrieved for candidate
layouts such as “components A and B should be close
together” or “component A must be above component B
with no inferring components”. Matcher 66 may try to
satisfy these requirements before matching the remaining
components.

Matcher 66 may also use information from cross-category
semantic links (i.e. links between component of different
component categories, such as image and text components)
when forming the matching. In such a case, matcher 66 may
perform the matching sequentially (e.g. first matching all
text components, then image components, etc.). The match-
ing for a given category may rely on the matching done for
previous categories.

Reference is now made to FIG. 29 which illustrates
attribute-based component matching integrating semantic
linking information. As is shown in the figure:

The handled component set has 2 sets of components
(picture+caption) marked a+aa, b+bb. Earlier on in the
process, semantic link handler 141 may have created the
semantic pairings [a]< [aa], [b]<> [bb].

A candidate layout is retrieved with 2 sets of components
[c]+[cc], [d]+[dd]. This candidate layout includes (in its

10

15

20

25

30

35

40

45

50

55

60

65

44

layout package) the semantic links embodying the [c]
< [cc], [d] <> [dd] semantic pairing.

Matcher 66 may first match the text category, resulting in
the matching [aa]=>[cc], [bb]=>[dd], followed by matching
the picture category.

When matcher 66 searches for a match for component a,
it may see that it is semantically paired with component aa
which was matched with component cc as component cc is
semantically paired with picture component ¢, matcher 66
matches component a to component ¢ directly and removes
them from the sets of components to be paired (component
a from the current layout component set, component ¢ from
the candidate layout component set).

It will be appreciated that in FIG. 29 the components in
the current layout and the candidate layout do not match
exactly, as the current layout has 4 additional text compo-
nents whereas the selected layout has 6 additional text
components and an additional data table component. This is
permissible, since the current layout and the candidate
layout are not required to match exactly.

It will be appreciated that matcher 66 may run on large
numbers of candidate layouts from layout database 70 as
produced by layout searcher and generator 60. It will be
further appreciated that not all layouts found may have a
successful match.

It will be further appreciated that all candidate layouts
with a successful match may be forwarded to layout filter
and ranker 45 to be filtered and ranked. Layout filter and
ranker 45 may then forward the top (for example) ten ranked
candidate layouts to layout adapter and applier 50 to adapt
the current page to the new layout and apply any content
accordingly. Layout adaptation may include a number of
types of adaptations, such as component layout adaptation,
e.g. size and position (the primary adaptation), component
type adaptation; color scheme adaptation and decoration
components from the selected page. System 100 may pro-
vide a user interface (UI), possible integrated with that of
page editor 30, to allow the user to select the desired layout
and to specify which types of adaptation to perform.

In an alternative embodiment to the present invention,
matcher 66 may be part of layout adapter and applier 50. L.e.
layout searcher and generator 60 may not apply matching to
all candidate layouts, and only once the user has chosen his
selected layout the matching process may take place. This
may be less computationally expensive as the matching
process is applied to the selected layout only and not to all
located layouts

In yet another embodiment, matching may take place after
a preliminary filtering of the selected layouts by layout filter
and ranker 45, and before the suggested layouts are pre-
sented to the user. Once a user has selected his desired
layout, layout adapter and applier 50 may apply format and
content from matched component subset of the selected
layout to the matched subset of the current layout.

Reference is now made to FIG. 30 which illustrates the
elements of layout adapter and applier 50. Layout adapter
and applier 50 may comprise a dynamic layout handler 52,
a container changes applier 53, a split/merge component
handler 54, a remaining component handler 55, a component
type conversion handler 56, a component attribute applier 57
and a post processor 58.

It will be appreciated that layout adapter and applier 50
may copy over the main attribute values (such as position,
size and z-priority) for the matched components from the
selected layout to the handled component set. Layout
adapter and applier 50 may also handle any unmatched
components between the handled component set and the

US 10,691,873 B2

45

handled component set matched components and between
the candidate layout and the candidate layout matched
component set. It may also handle any remaining compo-
nents that appear in either the handled component set or the
candidate layout (but not both) or those that appear in the
incoming request page or the selected layout (but not both).
Once layout adapter and applier 50 has adapted the candi-
date layout accordingly, previewer 32 may present the
candidate options to the user via previewer 32 in order for
a user to select his desired selected layout.

Component type conversion handler 56 may convert the
type of each component in the matched subset of the handled
component set if two components of different types have
been matched.

Component attribute applier 57 may copy the position,
size and z-order of the components of the matched subset of
the candidate layout.

Component attribute applier 57 may also apply other
component attributes, such as the colors, style or display
properties of the components (e.g. the number of row/
columns in a gallery component).

Component attribute applier 57 may apply the color
scheme (as discussed in US Patent Publication No.
US-2014-0237429 entitled “A System for Supporting Flex-
ible Color Assignment in Complex Documents” published
21 Aug. 2013, incorporated herein by reference and assigned
to the common assignee of the current invention).

Dynamic layout handler 52 may copy over any dynamic
layout explicit anchors and relationships to the new layout as
applicable. It will be appreciated that layout adapter and
applier 50 may break some anchors when (for example) one
of the anchored components is not included in the mapping.
It will further be appreciated that once the layout (and other
information) has been applied, dynamic layout handler 52
may apply dynamic layout processing so to handle compo-
nent size/position changes (e.g. if it has to immediately
apply a component size change due to larger amount of
content in the handled component set when compared to the
selected layout).

It will be appreciated that changing a component type
while preserving the content and parameters of the compo-
nent (e.g. display parameters of a gallery) may require
system 100 to support component type conversion, e.g.
support assigning the content and attributes of a component
of one type to a component of another type whenever
possible.

Component type conversion handler 56 may define spe-
cific conversion rules and procedures to handle specific type
conversions such as do not convert a video to an image—
keep the original video component type, when converting a
third party application, only convert to a new third party
application of identical type (e-shop to e-shop etc.).

As discussed herein above in relation to container handler
143, containers may be handled in a number of ways,
including keeping the container and using hierarchical sig-
natures, flattening the container and attaching the contained
components to the parent page, flattening combined with
container reconstruction, converting single-component con-
tainers to regular components, converting the container to a
new dummy component (discarding the contained sub-
components) and assigning the type of the dominant sub-
component inside the container.

Container changes applier 53 may use asymmetric han-
dling: applying container flattening on the stored layouts
side (i.e. in the selected layout), and dominant type assign-
ment on the handled component set/current layout side. In
this scenario, the selected layout may represent an incoming

10

20

40

45

50

46

requested page container by a single placeholder compo-
nent—matched with another single component in the
selected page.

Container changes applier 53 may adapt this placeholder
component to the matching component in the selected page.
It may replace the placeholder component with the original
container (including the sub-components originally con-
tained inside it).

Container changes applier 53 may also adapt the container
to the size, position and z-order of the matching selected
page component. It may also adjust the relative size and
position of the sub-component inside the container to the
new size and possibly apply dynamic layout to compensate
for the changes. It will be appreciated that container changes
applier 53 may perform recursively on all containers at all
levels.

It will also be appreciated that in addition to containers
there may be other scenarios in which two or more original
current page components could be merged into a single
current layout component. These may include, for example
components which overlap too much that have been united
into a single component, text components above each other
which were stitched together, multiple image components
stitched together and multiple image components converted
into a gallery.

In all of these cases, split/merged component handler 54
may draw a minimal enclosing rectangle surrounding the
pre-merge component set, and this rectangle is used to set
the size and position of the dummy placeholder component.
Thus split/merged component handler 54 resizes and moves
the contained components as discussed herein above for
containers when creating a match to the placeholder com-
ponent (on the current page side).

It will be appreciated that [A]-[B] refers to elements in
[A] which are not in [B] (also known as relative comple-
ment. It will be further appreciated that there might be
additional components not included in the matching. For
example, the difference of the components between the
handled component set and the selected layout i.e. compo-
nents in the pages omitted from the compared layouts.

There also may be components in the compared layouts
(handled component set and selected layout) which were not
matched by matcher 66.

Remaining component handler 55 may handle compo-
nents which appear in the incoming request page but are not
included in the selected layout (such as decorations, or
unmatched components in non-exact-matching scenario) by
dividing them into two-categories—layout relative and non-
layout relative components. Layout-relative components are
page components which are related to the layout component
(but are not part of the layout component set itself). Remain-
ing component handler 55 may identify such a relationship
through explicit specification, proximity, dynamic layout
anchoring or component content analysis. Remaining com-
ponent handler 55 may move and resize these components
together with the layout components to which they are
related.

Non-layout-relative components are the additional com-
ponents in the page which are not in the layout and are not
layout relative. These may include (in particular) compo-
nents which have been specified as locked by the user and
they are kept in place and not moved or resized.

It will be appreciated that components which appear in the
selected page but are not included in the selected layout may
be considered non-layout components (decoration or other-

US 10,691,873 B2

47

wise excluded). Remaining component handler 55 may
ignore them and may not transfer them as part of the layout
adaptation.

Remaining component handler 55 may support an excep-
tional case for the transfer of non-layout components (or
other page elements) which is important for the layout. An
example would be a non-layout background picture com-
ponent to which the layout components have been carefully
adapted (e.g. the components reside in “holes” in the pic-
ture). The component may be marked so that it is copied
over in case of adaptation even through it is not a part of the
regular layout. In fact, such a background picture may even
be marked as “critical”, meaning it would override any
existing current page background picture (if such one
exists).

Remaining component handler 55 may handle layout
components which are not in the matching as follows. For
unmatched components in the current page, i.e. components
that appear in the current layout but not in the current layout
matched set, remaining component handler 55 may instruct
AGL handler 62 to create an automatically generated layout
based on these remaining components. Remaining compo-
nent handler 55 may then arrange this newly-created auto-
matically generated layout below the bottom-most compo-
nent in the adapted current matched component set (i.e. the
current matched component set adapted based on layout
information from the selected layout. Remaining component
handler 55 may merge the automatically generated layout
with the adapted current matched component set.

Remaining component handler 55 may ignore unmatched
components in the candidate layout and may not transfer
them as part of the layout.

It will be appreciated that all changes made by remaining
component handler 55 may affect additional components
through dynamic layout processing of the page (e.g. moving
components pushing down other components). Thus, the
user may edit the adapted incoming request page and
candidate layout via page editor 30 and may determine how
to handle each component (e.g. moving it, discarding it or
otherwise modifying it).

It will be appreciated that page analyzer 44 may perform
many transformations (as described herein above) which
should be closed—i.e. reversed or handled before the final
process. For example, container handler 143 may perform
container analysis and transformations such as the replace-
ment of tightly wrapped containers which may have to be
undone on the final page. Post processor 58 may perform all
reverse transformations where required. It will also be
appreciated that it may reverse transformations performed
by semantic link analyzer within matcher 66 and container
changes applier 53.

It will be appreciated that layout adapter and applier 50
may apply to parts of pages or split pages, since it may be
required to apply multiple layouts to multiple page parts in
pages which have been segmented.

Once layout adapter and applier 50 has finished—the
resulting new layout may be presented to the user via
previewer 32.

Thus system 100 may be used to provide a user with
semantically similar layouts to a current page for use which
may be automatically updated format and content wise.

It will be appreciated that system 100 may allow the
construction of a designer layout community in which high
quality layouts could be marketed. This may act similarly to
an application store. Once a layout or layout family has been
purchased, these additional layouts would be available to the
purchasing user and used in his or her layout queries. Users

5

10

15

20

25

30

35

40

45

55

60

48

may also follow specific designers (whose style they prefer),
create private layout libraries etc.

System 100 may further include a mechanism for the
promotion of specific layouts and for the creation of a layout
marketplace (including promoted search capabilities which
may be integrated with the layout ranking by layout filter
and ranker 45 as described herein above.

It will be appreciated that the discussion of system 100
has been limited to searching according to the components
in a single page which are used as the search key (the
handled component set). In an alternative embodiment,
system 100 may also be applied to searching according to
multiple pages (i.e. multiple handled component sets) and
thus used for template selection expansion. An example of
this is when initially creating a page and the designer is
presented with a set of possible templates (e.g. page or page
section templates). The user may select a subset of the
offered templates and expand it using “search for more such
templates”. Another use may be when performing a selec-
tion (in layout database 70) based on the currently edited
page; the user may select a subset of the offered layouts and
expand it (by searching for additional layouts semantically
equivalent to the selected subset). This is a “search based on
search results” capability.

In this scenario layout searcher and generator 60 may
make multiple selections using the signature extracted from
each handled component set. It may unite the multiple
selected results and then diversify the suggested results
according to the multiple handled component sets, so to
locate suggested layouts as visually different as possible
from each of the handled component sets (and not just from
the handled component set used to search for the specific
result set).

Reference is now made to FIG. 31 which illustrates a joint
result diversification for multiple layout database queries. As
is illustrated, a request is made by a user for alternative
layouts when 3 templates are available (e.g. under a given
template category) T1, T2 and T3.

Page analyzer 44 may extract from these 3 templates the
handled component sets HCS1, HCS2 and HCS3.

Based on these 3 handled component sets the layout
searcher and generator 60 may selects the 3 semantically
similar results sets B1, B2 and B3, each of which contain
additional possible templates. For example, B1 contains the
3 templates pages h, i and j which are most semantically
similar to HCS1.

Layout ranker and filter 45 may jointly evaluate all
located pages/layouts in all results sets for B for diversity, by
comparing each possible layout against all layouts—includ-
ing original layouts (in set A) as well as all layouts in set B
(as is shown for e and f'in the figure). It will be appreciated
that layouts may be compared to non-semantically-equiva-
lent layouts for diversity.

Layout searcher and generator 60 may create the
expanded suggested template list, which may include the
original A layout, as well as some selected layouts from B
(e.g. e, g, h and 1). The user may select templates from this
expanded list to create P, the actual page.

It will also be appreciated that system 100 may also be
used to provide layout and formatting to pages containing
data collections that do not have a current design. Such
pages may be uniform in structure, or each may have its data
structure. Examples includes pages imported from sources
such external databases, XML record or RSS data feeds. An
additional data source may be a manual data entry editor,
which may be very quick to use, since no formatting should
be defined—just the raw data.

US 10,691,873 B2

49

In such a scenario, system 100 may review the data for the
current page, and create a signature based on the data types
of the imported data. Such data type determination may be
based on actual specified data types (e.g. database field
types, XML entity types etc.), data types determined by
analysis of the content of the imported data (e.g. recognizing
text field or type and format of included media files) and data
types specified by the user through an editor attached to the
import module. For example, system 100 may determine
that a given data field is a text field, but the user may provide
further information (e.g. classifying the field as title text
rather than regular text).

In addition to the data types, system may determine
additional information from the field, such as expected size
(based on the amount of content or the size of provided
media files). System 100 may then use the gathered infor-
mation to create a semantic signature as described herein
above, and use this signature to search for semantically
matching layouts.

Once an appropriate candidate layout is selected, the
information from the candidate layout is used to create a
layout for the existing data. System 100 may repeat this
process for all imported pages, and the system may re-use
selected layout determinations made for previous pages for
the new page (e.g. when pages use the same XML schema
or just have identical/similar fields).

In this embodiment, signature extractor 147 may extract
the signature from the set of current data fields (which serves
as a handled component set), instead of being extracted from
an actual page or part thereof.

Diversifier 49 may process the located layouts, but with-
out comparing them to the non-existent “current design”.
Layout adapter and applier 50 may copy over the full set of
attributes (as well as decoration components otherwise
ignored) from the selected layout.

It will be appreciated that a website building system
typically provides a number of templates for users to use as
a foundation for their application. Templates provide ready-
made pages, designs, components, content, color schemes
etc. and make the users’ job considerably easier. The site is
then created as a series of modifications to the templates
(changes, additions and deletions). However, the site struc-
ture becomes tightly coupled with the selected template, and
if the user desires to switch to another template it is often
difficult, if not outright impossible.

In an alternative embodiment, system 100 may apply a
new layout to the existing site based on existing template,
and thereby switch to a different template. In this scenario,
system 100 may allow the user to arbitrarily select a selected
layout from the full or a partial pool of layouts, without
limiting the selecting to suggested layouts having a substan-
tial semantic similarity to the current page. This way, the
user could switch to any desired template—even if it is
substantially different (semantically) from the existing one.
Of course, if the switched-to template is wildly different than
the existing one, the adaptation to the new template would
suffer in quality.

System 100 typically has full information regarding the
original template page used to create the current users’ page.
Thus, system 100 may distinguish between the underlying
template definitions and later modification. Layout adapter
and applier 50 may be modified so to handle the underlying
template first, and then re-apply the later changes—thus
allowing smooth template changing.

It will be further appreciated that website building system
vendor may further facilitate template switching by creating
families of templates which have an underlying mapping

10

15

20

25

30

35

40

45

50

55

60

65

50

between their members (e.g. based on common IDs inherited
from a single master template). Such underlying mapping
could be augmented by layout adapter and applier 50 by
matching additional components. Thus, the user would be
able to switch between templates in the same family very
easily.

While certain features of the invention have been illus-
trated and described herein, many modifications, substitu-
tions, changes, and equivalents will now occur to those of
ordinary skill in the art. It is, therefore, to be understood that
the appended claims are intended to cover all such modifi-
cations and changes as fall within the true spirit of the
invention.

Unless specifically stated otherwise, as apparent from the
preceding discussions, it is appreciated that, throughout the
specification, discussions utilizing terms such as “process-
ing,” “computing,” “calculating,” “determining,” or the like,
refer to the action and/or processes of a computer, comput-
ing system, or similar electronic computing device that
manipulates and/or transforms data represented as physical,
such as electronic, quantities within the computing system’s
registers and/or memories into other data similarly repre-
sented as physical quantities within the computing system’s
memories, registers or other such information storage, trans-
mission or display devices.

Embodiments of the present invention may include appa-
ratus for performing the operations herein. This apparatus
may be specially constructed for the desired purposes, or it
may comprise a general-purpose computer selectively acti-
vated or reconfigured by a computer program stored in the
computer. Such a computer program may be stored in a
computer readable storage medium, such as, but not limited
to, any type of disk, including floppy disks, optical disks,
magnetic-optical disks, read-only memories (ROMs), com-
pact disc read-only memories (CD-ROMs), random access
memories (RAMs), electrically programmable read-only
memories (EPROMs), electrically erasable and program-
mable read only memories (EEPROMs), magnetic or optical
cards, Flash memory, or any other type of media suitable for
storing electronic instructions and capable of being coupled
to a computer system bus.

The processes and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general-purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct a more specialized apparatus
to perform the desired method. The desired structure for a
variety of these systems will appear from the description
below. In addition, embodiments of the present invention are
not described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the invention as described herein.

29 <

What is claimed is:

1. A website building system implementable on a com-

puting device; the system comprising:

a processor;

a memory unit;

a layout database to store at least one layout and an
associated layout signature wherein said layout signa-
ture represents a hierarchical composition of the
semantic types of the components of said at least one
layout; and

a unit implemented on said processor for generating
visually diverse alternative layouts for an incoming
website page provided by a user and for replacing the

US 10,691,873 B2

51

layout of said incoming page with one of a selected

diverse alternative layout, the unit comprising:

a page analyzer to at least analyze a user supplied page of
a webpage having an existing layout and at least
generate an associated component set signature for said
user supplied page;

a signature comparer to perform a comparison of said
component set signature with an associated layout
signature of said at least one layout stored on said
layout database based on semantic type equivalence
between said at least one component set signature and
said associated layout signatures;

a layout searcher and generator to at least acquire from at
least said layout database a set of candidate layouts
according to the results of said signature comparer and
wherein a first candidate layout comprises semantically
similar components having visual diversity from a
second candidate layout and from said existing layout;

wherein said layout searcher and generator comprises:

a visual page comparer to determine the level of visual
similarity between a first candidate layout, said exist-
ing layout and from a second candidate layout; and

a diversifier to determine an extent of visual diversity
between said first candidate layout, existing layout
and from said second candidate layout according to
the output of said visual page comparer;

wherein said first candidate layout, existing layout and
said second candidate layout have semantically simi-
lar components and are visually diverse;

a layout adapter and applier to replace said existing layout
with a user-selected layout from said set of candidate
layouts and to adapt said user supplied page to said user
selected layout.

2. The system according to claim 1 and also comprising:

a page spider to retrieve at least one of: new and updated
website pages, templates and manually created layouts
from an associated application repository and pages
from external sources;

a layout filter and ranker to filter and rank at least one of:
said at least one layout generated by said page analyzer
and said candidate layout; and

wherein said page analyzer operates on the component
sets of said spider retrieved new and updated website
pages, templates and manually created layouts from an
associated application repository and component sets
of pages from external sources instead of operating on
said user supplied page.

3. The system according to claim 2 and wherein said

layout filter and ranker comprises:

a layout quality rater to calculate a quality score in order
to filter out low-quality pages of at least one of: said at
least one layout and said candidate layouts based on at
least one of page statistical metrics, page visual attri-
butes, content and a layout quality rater learning sys-
tem; and

a ranker to order at least one of said at least one layout and
said candidate layouts according to at least one of:
component size matching, semantic similarity to said
component set signature of said user supplied page and
component size matching.

4. The system according to claim 1 and wherein said page

analyzer comprises:

a signature extractor to extract at least one of: a full
component set signature and a partial component set
signature from said user supplied page wherein said
signature extractor performs at least one of: semantic
type mapping of said components, dividing sematic

10

15

20

25

30

35

40

45

50

55

60

65

52

types based on visual properties of said components
and generating signature elements based on multiple
component semantic types; and

at least one of:

a layout splitter to divide at least one of: said at least one
website page and said user supplied page into segments
based on at least one of: geometrical considerations,
said semantic links and dynamic layout anchors; a
semantic link handler to identify semantic links which
connect at least two components in at least one of: at
least one website page and said user supplied page and
to build a relevant data structure;

a page type identifier to determine the page type of at least
one of: said at least one website page and said user
supplied page; and

a component splitter to split at least one component of at
least one of: said webpage and said user supplied page
based on the content of said at least one component;
and

a component filter to filter to filter out unsuitable com-
ponents for said signature extractor; and

a component merger to unite at least two components for
layout processing and signature extraction by said
signature extractor; and

a container handler to reduce the amount of different
component set signatures for said user supplied page by
performing at least one of: using hierarchical signa-
tures, container flattening, container flattening and
reconstruction, single component container replace-
ment; dominant type selection and recursive implemen-
tation;

and wherein said page analyzer generates at least one of
a single full page layout, multiple partial page layouts,
multiple segmented layouts and an associated layout
package after processing by at least one of: said layout
splitter, said signature extractor, said page type identi-
fier, said semantic link handler; said component split-
ter; said component filter; said component merger and
said container handler.

5. The system according to claim 4 and wherein said
hierarchical signature represents the original hierarchical
structure of said at least one layout.

6. The system according to claim 4 and wherein the
components of said multiple partial page layouts and said
multiple segmented layouts are subsets of said single full
page layout.

7. The system according to claim 4 and wherein said
associated layout package comprises at least one of: the user
supplied page for said webpage, page type indication, com-
ponent and container split/merge information, said dynamic
layout anchors, semantic links, component relevance infor-
mation, page screenshot, said associated component set
signatures and said associated webpages.

8. The system according to claim 1 and wherein said
layout searcher and generator comprises:

a server based layout handler to perform at least one of:
retrieving said candidate layouts from said layout data-
base, completing partial candidate layouts and combin-
ing of at least two of segmented candidate layouts;

an automatically generated layout handler to perform at
least one of: creating said automatically generated
layouts based on the components in said component set
and completing said partial candidate layouts retrieved
by said server based layout handler; and

a matcher to create a match of components between said
user supplied page and said candidate layouts wherein
said match is at least one of: exact and partial.

US 10,691,873 B2

53

9. The system according to claim 8 and wherein said
automatically generated layout handler comprises:

an automatically generated layout coordinator to receive
at least one of: a base component set of said component
set and a base component set of components missing
from an associated said partial candidate layout from
said server based layout handler and to create multiple
possible algorithmically-generated layouts from said
base component set;

and at least one of:

a column layout generator to place components from said
base component set into one column after the other and

a main and side bar layout generator to place components
from said base component set in a main column fol-
lowed by a smaller side-bar and

a rule based generator to place components from said base
component set according to pre-defined placement
rules.

10. The system according to claim 8 and wherein said

server based layout handler comprises:

a server based layout coordinator to perform at least one
of: receiving said user supplied page and said associ-
ated component set signatures, querying said layout
database using said component set signatures, retriev-
ing said set of candidate layouts and coordinating
completion of at least one of: said partial candidate
layouts and segmented candidate layouts retrieved
from said layout database;

a partial layout handler to send components missing from
said partial candidate layouts to said automatically
generated layout handler and to use the resulting auto-
matically generated layout to complete said partial
candidate layouts; and

a segment layout handler to combine said segmented
candidate layouts into a full layout according to pre-
defined rules.

11. The system according to claim 8 and wherein said

layout adapter and applier comprises:

a component type conversion handler to convert the type
of each component in said user supplied page to the
type of each matching component in said selected
layout;

a component attribute applier to apply attributes to com-
ponents in said user supplied page from said selected
layout; and

at least one of:

a dynamic layout handler to transfer over said dynamic
layout explicit anchors and relationships from said user
supplied page to said selected layout; and

a container change applier to adapt containers from said
user supplied page to said selected layout; and

a split/merge component handler to perform at least one
of: splitting and merging components in said selected
layout; and

a remaining component handler to handle components
which appear in said user supplied page but are not
included in said selected layout; and

a post processor to perform reverse transformations made
by said page analyzer when necessary.

12. The system according to claim 8 and wherein said

selected layout is based on said match of components.

13. The system according to claim 1 and wherein said
layout signature and said component set signature are based
on the semantic classification categories of the components
of said website building system.

10

15

20

25

30

35

40

45

55

60

54

14. The system according to claim 1 and wherein said user
supplied page represents at least one of: an entire page and
a subset of components of said page.

15. The system according to claim 1 and wherein said
candidate layouts are acquired based on at least one of: a full
component set signature of said user supplied page, a partial
component set signature of said user supplied page, at least
one segment component set signature of said user supplied
page and an automatically generated layout.

16. The system according to claim 1 and wherein said
layout database is at least one of: user specific and group
specific.

17. The system according to claim 1 and wherein said
comparison is based on at least one of: semantic abstraction
and semantic distance metrics.

18. A method implementable on a computing device; said
method comprising:

storing at least one layout and an associated layout

signature wherein said layout signature represents a

hierarchical composition of the semantic types of the

components of said at least one layout; and

generating visually diverse alternative layouts for an

incoming website page provided by a user and for

replacing the layout of said incoming page with one of

a selected diverse alternative layout, the generating

comprising:

at least analyzing a user supplied page of a webpage
having an existing layout and at least generating an
associated component set signature for said user
supplied page;

performing a comparison of said component set signa-
ture with said associated layout signature of said at
least one layout stored on said layout database based
on semantic type equivalence between said at least
one component set signature and said associated
layout signatures;

at least acquiring from at least said layout database a set
of candidate layouts according to the results of said
performing a comparison and wherein a first candi-
date layout comprises semantically similar compo-
nents having visual diversity from a second candi-
date layout and from said existing layout;

wherein said at least acquiring comprises:

determining the level of visual similarity between a first
candidate layout, said existing layout and from a
second candidate layout; and

determining an extent of visual diversity between said
first candidate layout, existing layout and from said
second candidate layout according to the output of
said visual page comparer;

wherein said first candidate layout, existing layout and
said second candidate layout have semantically simi-
lar components and are visually diverse;

replacing said existing layout with a user-selected layout

from said set of candidate layouts and adapting said
user supplied page to said user selected layout.

19. The method according to claim 18 and also compris-
ing:

retrieving at least one of: new and updated website pages,

templates and manually created layouts from an asso-
ciated application repository and pages from external
sources; and

filtering and ranking at least one of: said at least one

layout generated by said generating and said candidate
layout and

wherein said analyzing operates on the component sets of

said spider retrieved new and updated website pages,

US 10,691,873 B2

55

templates and manually created layouts from an asso-
ciated application repository and component sets of
pages from external sources instead of operating on
said user supplied page.

20. The method according to claim 19 and wherein said
filtering and ranking comprises:

calculating a quality score in order to filter out low-quality

pages of at least one of: said at least one layout and said
candidate layouts based on at least one of page statis-
tical metrics, page visual attributes, content and a
layout quality rater learning system; and

ordering at least one of said at least one layout and said

candidate layouts according to at least one of: compo-
nent size matching, semantic similarity to said compo-
nent set signature of said user supplied page, and
component size matching.

21. The method according to claim 18 and wherein said
layout signature and said component set signature are based
on the semantic classification categories of the components
of said website building system.

22. The method according to claim 18 and wherein said
user supplied page represents at least one of: an entire page
and a subset of components of said page.

23. The method according to claim 18 and wherein said
candidate layouts are acquired based on at least one of: a full
component set signature of said user supplied page, a partial
component set signature of said user supplied page, at least
one segment component set signature of said user supplied
page and an automatically generated layout.

24. The method according to claim 18 and wherein said
layout database is at least one of: user specific and group
specific.

25. The method according to claim 18 and wherein said
comparison is based on at least one of: semantic abstraction
and semantic distance metrics.

26. The method according to claim 18 and wherein said
generating comprises:

extracting at least one of: a full component set signature

and a partial component set signature from said user
supplied page and wherein said extracting performs at
least one of: semantic type mapping of said compo-
nents, dividing sematic types based on visual properties
of said components and generating signature elements
based on multiple component semantic types; and

at least one of:

dividing at least one of: said at least one website page and

said user supplied page into segments based on at least
one of: geometrical considerations, said semantic links
and dynamic layout anchors;

identifying semantic links which connect at least two

components in at least one of: at least one website page,
said user supplied page and building a relevant data
structure;
determining the page type of at least one of: said at least
one website page and said user supplied page; and

splitting at least one component of at least one of: said
webpage and said user supplied page based on the
content of said at least one component; and

filtering out unsuitable components for said extracting;

and

uniting at least two components for layout processing and

signature extraction by said extracting; and

reducing the amount of different component set signatures

by performing at least one of: using hierarchical sig-
natures, container flattening, container flattening and
reconstruction, single component container replace-
ment;

20

25

35

40

45

55

60

56

dominant type selection and recursive implementation;

and wherein said generating generates at least one of a
single full page layout, multiple partial page layouts,
multiple segmented layouts and an associated layout
package after at least one of: said identifying, said
dividing, said extracting, said determining, said filter-
ing, said splitting, said uniting and said reducing.

27. The method according to claim 26 and wherein said
hierarchical signature represents the original hierarchical
structure of said at least one layout.

28. The method according to claim 26 and wherein the
components of said multiple partial page layouts and said
multiple segmented layouts are subsets of said single full
page layout.

29. The method according to claim 26 and wherein said
associated layout package comprises at least one of: the user
supplied page for said webpage, page type indication, com-
ponent and container split/merge information, said dynamic
layout anchors, semantic links, component relevance infor-
mation, page screenshot, said associated component set
signatures and said associated webpages.

30. The method according to claim 18 and wherein said
acquiring comprises:

performing at least one of: retrieving said candidate

layouts from said layout database, completing partial
candidate layouts and combining of at least two of
segmented candidate layouts;

performing at least one of: creating said automatically

generated layouts based on the components in said user
supplied page and completing said partial candidate
layouts retrieved by said performing at least one of:
retrieving said candidate layouts from said layout data-
base, completing said partial candidate layouts and
combining of at least two of segmented candidate
layouts; and

creating a match of components between said user sup-

plied page and said candidate layouts wherein said
match is at least one of: exact and partial.

31. The method according to claim 30 and wherein said
performing at least one of: retrieving said candidate layouts
from said layout database, completing said partial candidate
layouts and combining of at least two of segmented candi-
date layouts comprises:

receiving at least one of: a base component set of said user

supplied page and a base component set of components
missing from an associated said partial candidate lay-
out, from said performing at least one of: retrieving said
candidate layouts from said layout database, complet-
ing partial candidate layouts and combining of at least
two of segmented candidate layouts and creating mul-
tiple possible algorithmically-generated layouts from
said base component set;

and at least one of:

placing components from said base component set into
one column after the other and

placing components from said base component set in a

main column followed by a smaller side-bar and
placing components from said base component set
according to pre-defined placement rules.

32. The method according to claim 30 and wherein said
performing at least one of: creating said automatically
generated layouts based on the components in said user
supplied page and completing said partial candidate layouts
retrieved by said performing at least one of: retrieving said
candidate layouts from said layout database, completing said
partial candidate layouts and combining of at least two of
said segmented candidate layouts comprises:

US 10,691,873 B2

57

performing at least one of: receiving said user supplied
page and said associated component set signatures,
querying said layout database using said associated
component set signatures, retrieving said set of candi-
date layouts and coordinating completion of at least one
of: said partial candidate layouts and said segmented
candidate layouts retrieved from said layout database;

sending components missing from said partial candidate
layouts to said automatically generated layout handler
and using the resulting automatically generated layout
to complete said partial candidate layouts; and

combining said segmented candidate layouts into a full
layout according to pre-defined rules.

33. The method according to claim 21 and wherein said
selected layout is based on said match of components.

34. The method according to claim 18 and wherein said
replacing and adapting comprises:

10

15

58

converting the type of each component in said user
supplied page to the type of each matching component
in said selected layout;

applying attributes to components in said user supplied
page from said selected layout; and

at least one of:

transferring over said dynamic layout explicit anchors and
relationships from said user supplied page to said
selected layout; and

adapting containers from said user supplied page to said
selected layout; and

performing at least one of: splitting and merging compo-
nents in said selected layout; and

handling components which appear in said user supplied
page but are not included in said selected layout; and

performing reverse transformations made by said gener-
ating when necessary.

#* #* #* #* #*

